Принцип дополнительности в философском смысле. Принцип дополнительности, его проявления и сущность. Описание микрообъектов в квантовой механике

В повседневной жизни имеется два способа переноса энергии в пространстве — посредством частиц или волн. Чтобы, скажем, скинуть со стола костяшку домино, балансирующую на его краю, можно придать ей необходимую энергию двумя способами. Во-первых, можно бросить в нее другую костяшку домино (то есть передать точечный импульс с помощью частицы). Во-вторых, можно построить в ряд стоящие костяшки домино, по цепочке ведущие к той, что стоит на краю стола, и уронить первую на вторую: в этом случае импульс передастся по цепочке — вторая костяшка завалит третью, третья четвертую и так далее. Это — волновой принцип передачи энергии. В обыденной жизни между двумя механизмами передачи энергии видимых противоречий не наблюдается. Так, баскетбольный мяч — это частица, а звук — это волна, и всё ясно.

Подытожим сказанное. Если фотоны или электроны направлять в такую камеру по одному, они ведут себя как частицы; однако если собрать достаточную статистику таких одиночных экспериментов, то выяснится, что по совокупности эти же электроны или фотоны распределятся на задней стенке камеры так, что на ней будет наблюдаться знакомая картина чередующихся пиков и спадов интенсивности, свидетельствующая об их волновой природе. Иными словами, в микромире объекты, которые ведут себя как частицы, при этом как бы «помнят» о своей волновой природе, и наоборот. Это странное свойство объектов микромира получило название квантово-волнового дуализма . Проводилось множество экспериментов с целью «разоблачить истинную природу» квантовых частиц: использовались различные экспериментальные методики и установки, включая такие, которые позволили бы на полпути к приемнику выявить волновые свойства отдельной частицы или, напротив, определить волновые свойства светового пучка через характеристики отдельных квантов. Всё тщетно. Судя по всему, квантово-волновой дуализм объективно присущ квантовым частицам.

Принцип дополнительности — простая констатация этого факта. Согласно этому принципу, если мы измеряем свойства квантового объекта как частицы, мы видим, что он ведет себя как частица. Если же мы измеряем его волновые свойства, для нас он ведет себя как волна. Оба представления отнюдь не противоречат друг другу — они именно дополняют одно другое, что и отражено в названии принципа.

Как я уже объяснял во Введении , я считаю, что философия науки выиграла от такого корпускулярно-волнового дуализма несопоставимо больше, чем было бы возможно при его отсутствии и строгом разграничения явлений на корпускулярные и волновые. Сегодня совершенно очевидно, что объекты микромира ведут себя принципиально иным образом, нежели объекты привычного нам макромира. Но почему? На каких скрижалях это записано? И, подобно тому как средневековые натурфилософы мучительно пытались понять, является ли полет стрелы «свободным» или «вынужденным», так и современные философы бьются над разрешением квантово-волнового дуализма. На самом же деле и электроны, и фотоны представляют собой не волны и не частицы, а нечто совершенно особенное по своей внутренней природе — и потому не поддающееся описанию в терминах нашего повседневного опыта. Если же и дальше пытаться втиснуть их поведение в рамки знакомых нам парадигм, неизбежны всё новые парадоксы. Так что главный вывод здесь состоит в том, что наблюдаемый нами дуализм порожден не присущими квантовым объектам свойствами, а несовершенством категорий, которыми мы мыслим.

ДОПОЛНИТЕЛЬНОСТИ ПРИНЦИП – один из важнейших методологических и эвристических принципов современной науки. Предложен Н.Бором (1927) при интерпретации квантовой механики: для полного описания квантово-механических объектов нужны два взаимоисключающих («дополнительных») класса понятий, каждый из которых применим в особых условиях, а их совокупность необходима для воспроизведения целостности этих объектов. Физический смысл принципа дополнительности заключается в том, что квантовая теория связана с признанием принципиальной ограниченности классических физических понятий применительно к атомным и субатомным явлениям. Однако, как указывал Бор, «интерпретация эмпирического материала в существенном покоится именно на применении классических понятий» (Бор Н. Избр. науч. труды, т. 2. М., 1970, с. 30). Это означает, что действие квантового постулата распространяется на процессы наблюдения (измерения) объектов микромира: «наблюдение атомных явлений включает такое взаимодействие последних со средствами наблюдения, которым нельзя пренебречь» (там же, с. 37), т.е., с одной стороны, это взаимодействие приводит к невозможности однозначного («классического») определения состояния наблюдаемой системы независимо от средств наблюдения, а с другой стороны, никакое иное наблюдение, исключающее воздействие средств наблюдения, по отношению к объектам микромира невозможно. В этом смысле принцип дополнительности тесно связан с физическим смыслом «соотношения неопределенностей» В.Гейзенберга: при определенности значений импульса и энергии микрообъекта не могут быть однозначно определены его пространственно-временные координаты, и наоборот; поэтому полное описание микрообъекта требует совместного (дополнительного) использования его кинематических (пространственно-временных) и динамических (энергетически-импульсных) характеристик, которое, однако, не должно пониматься как объединение в единой картине по типу аналогичных описаний в классической физике. Дополнительный способ описания иногда называют неклассическим употреблением классических понятий (И.С.Алексеев).

Принцип дополнительности применим к проблеме «корпускулярно-волнового дуализма», которая возникает при сопоставлении объяснений квантовых явлений, основанных на идеях волновой механики (Э.Шредингер) и матричной механики (В.Гейзенберг). Первый тип объяснения, использующий аппарат дифференциальных уравнений, является аналитическим; он подчеркивает непрерывность движений микрообъектов, описываемых в виде обобщений классических законов физики. Второй тип основан на алгебраическом подходе, для которого существен акцент на дискретности микрообъектов, понимаемых как частицы, несмотря на невозможность их описания в «классических» пространственно-временных терминах. Согласно принципу дополнительности, непрерывность и дискретность принимаются как равно адекватные характеристики реальности микромира, они несводимы к некой «третьей» физической характеристике, которая «связала» бы их в противоречивом единстве; сосуществование этих характеристик подходит под формулу «либо одно, либо другое», а выбор из них зависит от теоретических или экспериментальных проблем, возникающих перед исследователем (Дж.Холтон).

Бор полагал, что принцип дополнительности применим не только в физике, но имеет более широкую методологическую значимость. Ситуация, связанная с интерпретацией квантовой механики, «имеет далеко идущую аналогию с общими трудностями образования человеческих понятий, возникающими из разделения субъекта и объекта» (там же, с. 53). Такого рода аналогии Бор усматривал в психологии и, в частности, опирался на идеи У.Джеймса о специфике интроспективного наблюдения за непрерывным ходом мышления: подобное наблюдение воздействует на наблюдаемый процесс, изменяя его; поэтому для описания мыслительных феноменов, устанавливаемых интроспекцией, требуются взаимоисключающие классы понятий, что соответствует ситуации описания объектов микрофизики. Другая аналогия, на которую Бор указывал в биологии, связана с дополнительностью между физико-химической природой жизненных процессов и их функциональными аспектами, между детерминистическим и телеологическим подходами. Он обращал также внимание на применимость принципа дополнительности к пониманию взаимодействия культур и общественных укладов. В то же время Бор предупреждал против абсолютизации принципа дополнительности в качестве некоей метафизической догмы.

Тупиковыми можно считать такие интерпретации принципа дополнительности, когда он трактуется как гносеологический «образ» некоей «внутренне присущей» объектам микромира противоречивости, отображаемой в парадоксальных описаниях («диалектических противоречиях») типа «микрообъект является и волной, и частицей», «электрон обладает и не обладает волновыми свойствами» и т.п. Разработка методологического содержания принципа дополнительности – одно из наиболее перспективных направлений в философии и методологии науки. В его рамках рассматриваются применения принципа дополнительности в исследованиях соотношений между нормативными и дескриптивными моделями развития науки, между моральными нормами и нравственным самоопределением человеческой субъективности, между «критериальными» и «критико-рефлексивными» моделями научной рациональности.

Литература:

1. Гейзенберг В. Физика и философия. М., 1963;

2. Кузнецов Б.Г. Принцип дополнительности. М., 1968;

3. Методологические принципы физики. История и современность. М., 1975;

4. Холтон Дж. Тематический анализ науки. М., 1981;

5. Алексеев И.С. Деятельностная концепция познания и реальности. – Избр. труды по методологии и истории физики. М., 1995;

6. Исторические типы научной рациональности, т. 1–2. М., 1997.

Принцип, который Бор назвал дополнительностью - одна из самых глубоких философских и естественнонаучных идей нашего времени, с которой можно сравнить лишь такие идеи, как принцип относительности или представление о физическом поле. Его общность не позволяет свести его к какому-либо одному утверждению - им надо овладевать постепенно, на конкретных примерах. Проще всего (так поступил в свое время и Бор) начать с анализа процесса измерения импульса р и координаты х атомного объекта.

Нильс Бор заметил очень простую вещь: координату и импульс атомной частицы нельзя измерить не только одновременно, но вообще с помощью одного и того же прибора. В самом деле, чтобы измерить импульс р атомной частицы и при этом не очень сильно его изменить, необходим чрезвычайно легкий подвижный «прибор». Но именно из-за его подвижности положение его весьма неопределенно. Для измерения координаты х мы должны, поэтому взять другой - очень массивный «прибор», который не шелохнулся бы при попадании в него частицы. Но как бы ни изменялся в этом случае ее импульс, мы этого даже не заметим.

Когда мы говорим в микрофон, то звуковые волны нашего голоса преобразуются там, в колебания мембраны. Чем легче и подвижнее мембрана, тем точнее она следует за колебаниями воздуха. Но тем труднее определить ее положение в каждый момент времени. Эта простейшая экспериментальная установка является иллюстрацией к соотношению неопределенностей Гейзенберга: нельзя в одном и том же опыте определить обе характеристики атомного объекта - координату х и импульс р. Необходимы два измерения и два принципиально разных прибора, свойства которых дополнительны друг другу.

Дополнительность - вот то слово и тот поворот мысли, которые стали доступны всем благодаря Бору. До него все были убеждены, что несовместимость двух типов приборов непременно влечет за собой противоречивость их свойств. Бор отрицал такую прямолинейность суждений и разъяснял: да, свойства их действительно несовместимы, но для полного описания атомного объекта оба они равно необходимы и поэтому не противоречат, а дополняют друг друга.

Это простое рассуждение о дополнительности свойств двух несовместимых приборов хорошо объясняет смысл принципа дополнительности, но никоим образом его не исчерпывает. В самом деле, приборы нам нужны не сами по себе, а лишь для измерения свойств атомных объектов. Координата х и импульс р - это те понятия, которые соответствуют двум свойствам, измеряемым с помощью двух приборов. В знакомой нам цепочке познания

явление -> образ -> понятие -> формула

принцип дополнительности сказывается, прежде всего, на системе понятий квантовой механики и на логике ее умозаключений.



Дело в том, что среди строгих положений формальной логики существует «правило исключенного третьего», которое гласит: из двух противоположных высказываний одно истинно, другое - ложно, а третьего быть не может. В классической физике не было случая усомниться в этом правиле, поскольку там понятия «волна» и «частица» действительно противоположны и несовместимы по существу. Оказалось, однако, что в атомной физике оба они одинаково хорошо применимы для описания свойств одних и тех же объектов, причем для полного описания необходимо использовать их одновременно.

Люди, воспитанные на традициях классической физики, восприняли эти требования как некое насилие над здравым смыслом и поговаривали даже о нарушении законов логики в атомной физике. Бор объяснил, что дело здесь вовсе не в законах логики, а в той беспечности, с которой иногда без всяких оговорок используют классические понятия для объяснения атомных явлений. А такие оговорки необходимы, и соотношение неопределенностей Гейзенберга δx δp ≥ 1/2h точная запись этого требования на строгом языке формул.

Причина несовместимости дополнительных понятий в нашем сознании глубока, но объяснима. Дело в том, что познать атомный объект непосредственно - с помощью наших пяти чувств - мы не можем. Вместо них мы используем точные и сложные приборы, которые изобретены сравнительно недавно. Для объяснения результатов опытов нам нужны слова и понятия, а они появлялись задолго до квантовой механики и никоим образом к ней не приспособлены. Однако мы вынуждены ими пользоваться - у нас нет другого выхода: язык и все основные понятия мы усваиваем с молоком матери и, во всяком случае, задолго до того, как узнаем о существовании физики.

Принцип дополнительности Бора - удавшаяся попытка примирить недостатки устоявшейся системы понятий с прогрессом наших знаний о мире. Этот принцип расширил возможности нашего мышления, объяснив, что в атомной физике меняются не только понятия, но и сама постановка вопросов о сущности физических явлений.

Но значение принципа дополнительности выходит далеко за пределы квантовой механики, где он возник первоначально. Лишь позже - при попытках распространить его на другие области науки - выяснилось его истинное значение для всей системы человеческих знаний. Можно спорить о правомерности такого шага, но нельзя отрицать его плодотворность во всех случаях, даже далеких от физики.

Сам Бор любил приводить пример из биологии, связанный с жизнью клетки, роль которой вполне подобна значению атома в физике. Если атом - последний представитель вещества, который еще сохраняет его свойства, то клетка - это самая малая часть любого организма, которая все еще представляет жизнь в ее сложности и неповторимости. Изучить жизнь клетки - значит узнать все элементарные процессы, которые в ней происходят, и при этом понять, как их взаимодействие приводит к совершенно особому состоянию материи - к жизни.

При попытке выполнить эту программу оказывается, что одновременное сочетание такого анализа и синтеза неосуществимо. В самом деле, чтобы проникнуть в детали механизмов клетки, мы рассматриваем ее в микроскоп - сначала обычный, затем электронный - нагреваем клетку, пропускаем через нее электрический ток, облучаем, разлагаем на составные части... Но чем пристальнее мы станем изучать жизнь клетки, тем сильнее мы будем вмешиваться в ее функции и в ход естественных процессов, в ней протекающих. В конце концов, мы ее разрушим и поэтому ничего не узнаем о ней как о целостном живом организме.

И все же ответ на вопрос «Что такое жизнь?» требует анализа и синтеза одновременно. Процессы эти несовместимы, но не противоречивы, а лишь дополнительны - в смысле Бора. И необходимость учитывать их одновременно - лишь одна из причин, по которой до сих пор не существует полного отверз на вопрос о сущности жизни.

Как и в живом организме, в атоме важна целостность его свойств «волна - частица». Конечная делимость материи породила не только конечную делимость атомных явлений - она привела также X пределу делимости понятий, с помощью которых мы эти явления описываем.

Часто говорят, что правильно поставленный вопрос - уже половина ответа. Это не просто красивые слова.

Правильно поставленный вопрос - это вопрос о тех свойствах явления, которые у него действительно есть. Поэтому такой вопрос уже содержат в себе все понятия, которые необходимо использовать в ответе. На идеально поставленный вопрос можно ответить коротко: «да» или «нет». Бор показал, что вопрос «Волна или частица?» в применении к атомному объекту неправильно поставлен. Таких раздельных свойств у атома нет, и потому вопрос не допускает однозначного ответа «да» или «нет». Точно так же, как нет ответа у вопроса: «Что больше: метр или килограмм?», и у всяких иных вопросов подобного типа.

Два дополнительных свойства атомной реальности нельзя разделить, не разрушив при этом полноту и единство явления природы, которое мы называем атомом. В мифологии такие случаи хорошо известны: нельзя разрезать на две части кентавра, сохранив при этом в живых и коня и человека.

Атомный объект - это и не частица, и не волна и даже ни то, ни другое одновременно. Атомный объект - это нечто третье, не равное простой сумме свойств волны и частицы. Это атомное «нечто» недоступно восприятию наших пяти чувств, и, тем не менее, оно, безусловно, реально. У нас нет образов и органов чувств, чтобы вполне представить себе свойства этой реальности. Однако сила нашего интеллекта, опираясь на опыт, позволяет познать ее и без этого. В конце концов (надо признать правоту Борна), «...теперь атомный физик далеко ушел от идиллических представлений старомодного натуралиста, который надеялся проникнуть в тайны природы, подстерегая бабочек на лугу».

Когда Гейзенберг отбросил идеализацию классической физики - понятие «состояние физической системы, независимое от наблюдения», - он тем самым предвосхитил одно из следствий принципа дополнительности, поскольку понятия «состояние» и «наблюдение» - дополнительные в смысле Бора. Взятые в отдельности, они неполны и поэтому могут быть определены только совместно, друг через друга. Говоря строго, эти понятия вообще не существуют порознь: мы всегда наблюдаем не вообще нечто, а непременно какое-то состояние. И наоборот: всякое «состояние» - это вещь в себе до тех пор, пока мы не найдем способ его «наблюдения».

Взятые по отдельности понятия: волна, частица, состояние системы, наблюдение системы - это некие абстракции, не имеющие отношения к атомному миру, но необходимые для его понимания. Простые, классические картины дополнительны в том смысле, что для полного описания природы необходимо гармоничное слияние этих двух крайностей, но в рамках привычной логики они могут сосуществовать без противоречий лишь в том случае, если область их применимости взаимно ограничена.

Много размышляя над этими и другими похожими проблемами, Бор пришел к выводу, что это не исключение, а общее правило: всякое истинно глубокое явление природы не может быть определено однозначно с помощью слов нашего языка и требует для своего определения, по крайней мере, двух взаимоисключающих дополнительных понятий. Это означает, что при условии сохранения нашего языка и привычной логики мышление в форме дополнительности ставит пределы точной формулировке понятий, соответствующих истинно глубоким явлениям природы. Такие определения либо однозначны, но тогда неполны, либо полны, но тогда неоднозначны, поскольку включают в себя дополнительные понятия, несовместимые в рамках обычной логики. К таким понятиям относятся понятия «жизнь», «атомный объект», «физическая система» и даже само понятие «познание природы».

С давних пор известно, что наука - это лишь один из способов изучить окружающий мир. Другой, дополнительный, способ воплощен в искусстве. Само совместное существование искусства и науки - хорошая иллюстрация принципа дополнительности. Можно полностью уйти в науку или всецело жить искусством - оба эти подхода к жизни одинаково правомерны, хотя взятые по отдельности и неполны. Стержень науки - логика и опыт. Основа искусства - интуиция и прозрение. Но искусство балета требует математической точности, а «...вдохновение в геометрии столь же необходимо, как и в поэзии» Они не противоречат, а дополняют друг друга: истинная наука сродни искусству - точно так же, как настоящее искусство всегда включает в себя элементы науки. В высших своих проявлениях они неразличимы и неразделимы, как свойства «волна - частица» в атоме. Они отражают разные, дополнительные стороны человеческого опыта и лишь взятые вместе дают нам полное представление о мире. Неизвестно, к сожалению, только «соотношение неопределенностей» для сопряженной пары понятий «наука - искусство», а потому и степень ущерба, который мы терпим при одностороннем восприятии жизни.

Конечно, приведенная аналогия, как и всякая аналогия, и неполна и нестрога. Она лишь помогает нам почувствовать единство и противоречивость всей системы человеческих знаний.

Принцип, который очень точно и емко Бор назвал дополнительностью, - одна из самых глубоких философских и естественно-научных идей настоящего времени. С ним можно сравнить лишь такие идеи, как принцип относительности или представление о физическом поле. «За годы, предшествующие выступлению Н. Бора в Комо, имели место многочисленные дискуссии о физической интерпретации квантовой теории, - пишет У.И. Франкфурт. - Суть квантовой теории - в постулате, согласно которому каждому атомному процессу свойственна прерывность, чуждая классической теории. Квантовая теория признает в качестве одного из своих основных положений принципиальную ограниченность классических представлений при их применении к атомным явлениям, чуждую классической физике, но в то же время интерпретация эмпирического материала основывается главным образом на применении классических понятий. Из-за этого при формулировке квантовой теории возникают существенные трудности. Классическая теория предполагает, что физическое явление можно рассматривать, не оказывая на него принципиально неустранимого влияния». Для доклада на Международном физическом конгрессе в Комо «Квантовый постулат и новейшее развитие атомной теории» ввиду важности обсуждавшихся проблем Бору была предоставлена четырехкратная норма времени. Дискуссия по его докладу заняла все оставшееся время конгресса. «…Открытие универсального кванта действия, - говорил Нильс Бор, - привело к необходимости дальнейшего анализа проблемы наблюдения. Из этого открытия следует, что весь способ описания, характерный для классической физики (включая теорию относительности), остается применимым лишь до тех пор, пока все входящие в описание величины размерности действия велики по сравнению с квантом действия Планка. Если это условие не выполняется, как это имеет место в области явлений атомной физики, то вступают в силу закономерности особого рода, которые не могут быть включены в рамки причинного описания… Этот результат, первоначально казавшийся парадоксальным, находит, однако, свое объяснение в том, что в указанной области нельзя более провести четкую грань между самостоятельным поведением физического объекта и его взаимодействием с другими телами, используемыми в качестве измерительных приборов; такое взаимодействие с необходимостью возникает в процессе наблюдения и не может быть непосредственно учтено по самому смыслу понятия измерения… Это обстоятельство фактически означает возникновение совершенно новой ситуации в физике в отношении анализа и синтеза опытных данных. Она заставляет нас заменить классический идеал причинности некоторым более общим принципом, называемым обычно „дополнительностью“. Получаемые нами с помощью различных измерительных приборов сведения о поведении исследуемых объектов, кажущиеся несовместимыми, в действительности не могут быть непосредственно связаны друг с другом обычным образом, а должны рассматриваться как дополняющие друг друга. Таким образом, в частности, объясняется безуспешность всякой попытки последовательно проанализировать „индивидуальность“ отдельного атомного процесса, которую, казалось бы, символизирует квант действия, с помощью разделения такого процесса на отдельные части. Это связано с тем, что если мы хотим зафиксировать непосредственным наблюдением какой-либо момент в ходе процесса, то нам необходимо для этого воспользоваться измерительным прибором, применение которого не может быть согласовано с закономерностями течения этого процесса. Между постулатом теории относительности и принципом дополнительности при всем их различии можно усмотреть определенную формальную аналогию. Она заключается в том, что подобно тому, как в теории относительности оказываются эквивалентными закономерности, имеющие различную форму в разных системах отсчета вследствие конечности скорости света, так в принципе дополнительности закономерности, изучаемые с помощью различных измерительных приборов и кажущиеся взаимно противоречащими вследствие конечности кванта действия, оказываются логически совместимыми. Чтобы дать по возможности ясную картину сложившейся в атомной физике ситуации, совершенно новой с точки зрения теории познания, мы хотели бы здесь прежде всего рассмотреть несколько подробнее такие измерения, целью которых является контроль за пространственно-временным ходом какого-либо физического процесса. Такой контроль в конечном счете всегда сводится к установлению некоторого числа однозначных связей поведения объекта с масштабами и часами, определяющими используемую нами пространственно-временную систему отсчета. Мы лишь тогда можем говорить о самостоятельном, не зависимом от условий наблюдения поведении объекта исследования в пространстве и во времени, когда при описании всех условий, существенных для рассматриваемого процесса, можем полностью пренебречь взаимодействием объекта с измерительным прибором, которое неизбежно возникает при установлении упомянутых связей. Если же, как это имеет место в квантовой области, такое взаимодействие само оказывает большое влияние на ход изучаемого явления, ситуация полностью меняется, и мы, в частности, должны отказаться от характерной для классического описания связи между пространственно-временными характеристиками события и всеобщими динамическими законами сохранения. Это вытекает из того, что использование масштабов и часов для установления системы отсчета по определению исключает возможность учета величин импульса и энергии, передаваемых измерительному прибору в ходе рассматриваемого явления. Точно так же и наоборот, квантовые законы, в формулировке которых существенно используются понятия импульса или энергии, могут быть проверены лишь в таких экспериментальных условиях, когда исключается строгий контроль за пространственно-временным поведением объекта». Согласно соотношению неопределенностей Гейзенберга, нельзя в одном и том же опыте определить обе характеристики атомного объекта - координату и импульс. Но Бор пошел дальше. Он отметил, что координату и импульс атомной частицы нельзя измерить не только одновременно, но вообще с помощью одного и того же прибора. Действительно, для измерения импульса атомной частицы необходим чрезвычайно легкий подвижный «прибор». Но именно из-за его подвижности положение его весьма неопределенно. Для измерения координаты нужен очень массивный «прибор», который не шелохнулся бы при попадании в него частицы. Но как бы ни изменялся в этом случае ее импульс, мы этого даже не заметим. «Дополнительность - вот то слово и тот поворот мысли, которые стали доступны всем благодаря Бору, - пишет Л.И.Пономарев. - До него все были убеждены, что несовместимость двух типов приборов непременно влечет за собой противоречивость их свойств. Бор отрицал такую прямолинейность суждений и разъяснял: да, свойства их действительно несовместимы, но для полного описания атомного объекта оба они равно необходимы и поэтому не противоречат, а дополняют друг друга. Это простое рассуждение о дополнительности свойств двух несовместимых приборов хорошо объясняет смысл принципа дополнительности, но никоим образом его не исчерпывает. В самом деле, приборы нам нужны не сами по себе, а лишь для измерения свойств атомных объектов. Координата х и импульс р - это те понятия, которые соответствуют двум свойствам, измеряемым с помощью двух приборов. В знакомой нам цепочке познания - явление - образ, понятие, формула, принцип дополнительности сказывается прежде всего на системе понятий квантовой механики и на логике ее умозаключений. Дело в том, что среди строгих положений формальной логики существует „правило исключенного третьего“, которое гласит: из двух противоположных высказываний одно истинно, другое - ложно, а третьего быть не может. В классической физике не было случая усомниться в этом правиле, поскольку там понятия „волна“ и „частица“ действительно противоположны и несовместимы по существу. Оказалось, однако, что в атомной физике оба они одинаково хорошо применимы для описания свойств одних и тех же объектов, причем для полного описания необходимо использовать их одновременно». Принцип дополнительности Бора - удавшаяся попытка примирить недостатки устоявшейся системы понятий с прогрессом наших знаний о мире. Этот принцип расширил возможности нашего мышления, объяснив, что в атомной физике меняются не только понятия, но и сама постановка вопросов о сущности физических явлений. Но значение принципа дополнительности выходит далеко за пределы квантовой механики, где он возник первоначально. Лишь позже - при попытках распространить его на другие области науки - выяснилось его истинное значение для всей системы человеческих знаний. Можно спорить о правомерности такого шага, но нельзя отрицать его плодотворность во всех случаях, даже далеких от физики. «Бор показал, - отмечает Пономарев, - что вопрос „Волна или частица?“ в применении к атомному объекту неправильно поставлен. Таких раздельных свойств у атома нет, и потому вопрос не допускает однозначного ответа „да“ или „нет“. Точно так же, как нет ответа у вопроса: „Что больше: метр или килограмм?“, и у всяких иных вопросов подобного типа». Два дополнительных свойства атомной реальности нельзя разделить, не разрушив при этом полноту и единство явления природы, которое мы называем атомом… …Атомный объект - это и не частица, и не волна и даже ни то, ни другое одновременно. Атомный объект - это нечто третье, не равное простой сумме свойств волны и частицы. Это атомное «нечто» недоступно восприятию наших пяти чувств, и тем не менее оно, безусловно, реально. У нас нет образов и органов чувств, чтобы вполне представить себе свойства этой реальности. Однако сила нашего интеллекта, опираясь на опыт, позволяет познать ее и без этого. В конце концов (надо признать правоту Борна), «…теперь атомный физик далеко ушел от идиллических представлений старомодного натуралиста, который надеялся проникнуть в тайны природы, подстерегая бабочек на лугу».

1

Проведен анализ методики химических исследований и особенностей логики языка химии. Свойства любого вещества в химии определяют по результатам взаимодействий с другими веществами. Использование логики отношений приводит к тому, что в общем случае целостное описание химических свойств вещества достигается наборами различных терминов, включая антонимы. В зависимости от природы реагентов, относительно которых устанавливаются химические свойства, вещества могут быть и кислотами, и основаниям; и окислителями, и восстановителями, то есть проявляют химическую двойственность. Эта двойственность установлена в химии задолго до открытия дуализма "волна-частица", для понимания которого Н. Бор предложил принцип дополнительности. Химия имеет все атрибуты фундаментальной науки: методологию, язык, обширные области практического применения. Свойства вещества исследуются методами и химии, и физики, и других естественных наук, что соответствует принципу дополнительности.

принцип дополнительности

логика отношений

язык химии

методика исследований

редукция

1. Губин С.П. Химия кластеров. Основы классификации и строение. – М.: Наука, 1987.

2. Еремин В.В., Борщевский А.Я. Основы общей и физической химии. – Долгопрудный: Издательский дом "Интеллект", 2012.

3. Корольков Д.В. Теоретическая химия - суверенная дисциплина // Российский химический журнал. – 1996. – Т. 40, № 3. – С. 26-38.

4. Курашов В.И., Соловьев Ю.И. О проблеме "сведения" химии к физике // Вопросы философии. – 1984. – № 9. – С. 89-98.

5. Лотман Ю.М. Культура и взрыв. – М.: Гнозис, 1992.

6. Семенов Н.Н. В кн.: Наука и общество. – М.: Наука, 1973. – С. 76.

7. Сергиевский В.В., Наговицына О.А., Ананьева Е.А. Язык химии: системно-семиотический подход // Образование и наука без границ: тезисы докл. международной конференции (Германия, г. Мюнхен, 17-22 ноября 2013 г.). – г. Мюнхен, Германия, 2013. – с.18.

8. Словохотов Ю.Л., Стручков Ю.Т. Архитектура кластеров // Журн. ВХО им. Д.И. Менделеева. – 1987. – Т. 32, № 1. – С. 25-33.

9. Фейнман Р., Лейтон Р., Сэнде М. Фейнмановские лекции по физике. – М.: Мир, 1967. – С. 34.

10. де Шарден П.Т. Феномен человека. – М.: Прогресс, 1965.

Введение

В настоящее время происходит сокращение объема фундаментальных естественнонаучных дисциплин в содержании и школьного, и высшего образования. Ситуация обостряется тем, что в классификациях естественных наук многие авторы не выделяют химию в качестве самостоятельной науки, ее редуцируют ("сводят") к физике . Вместе с тем, еще в 1899 г. Д.И. Менделеев в предисловии к "Истории химии" Э. Мейера писал, что химия "выработала и продолжает развивать свой кругозор, который идет в параллель с чисто механическим и обещает его пополнить, хотя и доныне еще многие желают всю химию подчинить чисто механическим представлениям. Но, если науки об организмах приводят к пониманию индивидуальных особенностей, а науки физико-механического содержания стараются совершенно устранить это понятие об индивидуализме, то химия, уже своим учением о самостоятельности химических элементов, очевидно, занимает срединное положение, оправдывающее тот интерес, который она представляет для философской мысли".

Химики высказывают по этому вопросу полярные мнения. Например, утверждается , что "сущность химии как фундаментальной науки заключена в теоретических представлениях, имеющих не только неэмпирический, но в не меньшей степени полуэмпирический и эмпирический характер". Авторы учебного пособия считают химию отдельной наукой, поскольку она имеет "своеобразный, уникальный предмет изучения - колоссальное разнообразие веществ" и, более того, "сама создает свой предмет. ... Физика изучает законы природы, биология - законы жизни, все это существует и без нас. А химики изучают то, что сделали, придумали, синтезировали и изучили сами". В то же время, основные законы химии (Периодический закон, закон сохранения и закон действующих масс) названы авторами "проекцией" законов физики на химические явления". Согласиться с такой трактовкой нельзя: материальный мир, состоящий из химических веществ, существует объективно. Его исследование методами химии является необходимым условием выживания человечества.

Отдельные науки отличаются, прежде всего, методами исследования и наличием проблемно-ориентированных языков. Рассмотрим особенности методов классической химии.

Методология химических исследований .

Свойства и строение вещества в химии устанавливают по результатам превращений. Например, строение карбидов урана UC 2 и европия EuC 2 можно установить по продуктам их взаимодействия с водой. При гидролизе этих соединений кристаллические исходные реагенты превращаются в аморфные и наблюдается выделение газообразных компонентов. По плотности газов относительно воздуха определяют молекулярную массу газов. Установлено, что при гидролизе карбида урана выделяется этилен С 2 Н 4 , а при гидролизе карбида европия - ацетилен С 2 Н 2 . Понятно, что в исходных карбидах атомы металлов занимают места, по которым при гидролизе к фрагментам С=С и С≡С присоединились атомы водорода. Следовательно, степени окисления урана и европия в карбидах равны +4 и +2, соответственно, а реакции гидролиза записываются в виде

UC 2 (тв) + 4Н 2 О (ж.) = U(OH) 4 (тв) + С 2 Н 4 (газ)

EuC 2 (тв) + 2Н 2 О (ж.) = Eu(OH) 2 (тв) + С 2 Н 2 (газ)

Разнообразие признаков, свидетельствующих о происходящих в системе химических превращениях, с использованием соответствующей базы справочных данных, позволяет расшифровать продукты превращения. В химическом опыте «вулкан» мы можем наблюдать изменение цвета соединений хрома и это свидетельствует об изменении его степени окисления, выделение газообразных веществ, паров воды, тепла.

Этот метод исследования нобелевский лауреат в области физики Р. Фейнман охарактеризовал следующим образом : "Чтобы узнать, как расположены атомы в какой-нибудь невероятно сложной молекуле, химик смотрит, что будет, если смешать два разных вещества. Да физик нипочем не поверит, что химик, описывая расположение атомов, понимает, о чем говорит. Но вот... появился физический метод, который позволяет разглядывать молекулу... и описывать расположение атомов не по цвету раствора, а по измерению расстояний между атомами. И что же? Оказалось, что химики почти никогда не ошибаются".

Особенности языка и логики химии . Обычно под языком химии понимают химические символы элементов, формулы соединений, уравнения реакций, номенклатуры названий. С позиций семиотики (науки о знаковых системах) вещества можно рассматривать как знаки, химические значения (свойства) которых устанавливают по результатам превращений в тех или иных химических системах . При этом свойства того или иного вещества устанавливают относительно других веществ. Естественно, что в этой логике отношений многие вещества проявляют свойства, которые отражаются в химической терминологии терминами, которые являются антонимами.

В химии широко представлены кислотно-основные взаимодействия, рассмотрение которых проводят с различных позиций. В терминологии нобелевского лауреата С. Аррениуса кислоты - вещества, при электролитической диссоциации которых в водных растворах отщепляются протоны, а основания - вещества, продуцирующие при диссоциации ионы гидроксила. Были выделены гидроксиды металлов, которые проявляют свойства и кислот, и оснований. Например, относительно кислоты в реакции

Al(OH) 3 + 3HCl = AlCl 3 + 3H 2 O

гидроксид алюминия проявляет свойства основания, а относительно основания в реакции

Al(OH) 3 + NaOH = Na

проявляет свойства кислоты. Это явление кислотно-основной двойственности в химии (амфотерность) в школьном курсе химии рассматривается как исключение. Однако оно является скорее правилом, чем исключением.

Рассмотрим кислотно-основные взаимодействия в различных средах на основе представлений Бренстеда-Лоури. Здесь кислота рассматривается как вещество, состоящее из молекул или ионов - доноров протонов, а основание - как вещество, состоящее из молекул или ионов - акцепторов протонов. Установлено, например, что в различных растворителях молекулы воды проявляют химическую двойственность. Так, при взаимодействии в жидком аммиаке

NH 3 (ж) + Н 2 О (ж) = NH 4 + (раствор) + ОН - (раствор)

вода проявляется свойства сильной кислоты, а в жидком фтороводороде

HF (ж) + Н 2 О (ж) = H 3 O + (раствор) + F - (раствор)

она проявляет свойства сильного основания.

Не менее интересны результаты качественного определения структуры ассоциатов, которые образуются в жидкой воде. Согласно оценкам, сделанным по различным экспериментальным данным, число водородных связей, приходящихся на молекулу воды, больше двух. Можно полагать, что в воде существует какое-то количество тримеров воды.

В структуре тримера (рис.1) молекула воды (1) согласно представлениям Бренстеда-Лоури является основанием, молекула (3) - кислотой, а молекула (2) - и кислотой, и основанием.

Рис.1. Структурная формула тримера воды

Бифункциональность присуща структуре многих веществ, в частности, аминокислот. В том, что эти соединения существуют не только в молекулярной форме HO(O)C-CH 2 -NH 2 , но и в виде цвиттерионов - O(O)C-CH 2 -NH 3 + , можно убедиться на примере простейшей аминокислоты - глицина

Проявление веществами противоположных свойств характерно не только для кислотно-основных, но и для других химических свойств. Так, электролитическая диссоциация веществ во многом определяется природой растворителя. Например, хлороводород в воде является сильным электролитом, в этиловом спирте - слабым электролитом, а в бензоле - неэлектролитом.

Многие вещества проявляют противоположные свойства в окислительно-восстановительных реакциях. Например, пероксид водорода в водных растворах, содержащих иодид-ионы, в реакции

2KI + H 2 O 2 + H 2 SO 4 = I 2 + K 2 SO 4 + 2H 2 O

принимает электроны, то есть является окислителем. В системах H 2 O 2 с перманганатом калия протекает реакция

5 H 2 O 2 + 2KMnO 4 + 3H 2 SO 4 = 2MnSO 4 + K 2 SO 4 + 5O 2 + 8Н 2 О,

то есть пероксид водорода является восстановителем.

Продукты окислительно-восстановительных реакций зависят от водородного показателя среды, что иллюстрируется следующими уравнениями

2KMnO 4 + 5Na 2 SO 3 + 3H 2 SO 4 = 2MnSO 4 + 5Na 2 SO 4 + K 2 SO 4 + 2H 2 O

2KMnO 4 + 3Na 2 SO 3 + H 2 O = 2MnO 2 ↓ + 3Na 2 SO 4 + 2KOH

2KMnO 4 + Na 2 SO 3 + 2KOH = 2K 2 MnO 4 + Na 2 SO 3 + H 2 O

В этих реакциях образующиеся продукты превращения легко распознаются по цвету раствора и образованию осадка MnO 2 .

Приведенные примеры свидетельствуют о том, что утверждения типа (либо..., либо...), характерные для формальной логики, в логике отношений, свойственной химии, сменяют утверждениями типа (и..., и...), содержащими термины - антонимы. Эту особенность логики химии обычно не доводят до сведения школьников и студентов. В результате для многих людей химия остается трудной для понимания наукой. Понятно, что закон исключенного третьего формальной логики в химии можно использовать лишь для полностью охарактеризованных химических систем. Например, без указания реагента, относительно которого устанавливается свойство, некорректен, например, следующий вопрос: является ли гидроксид цинка Zn(OH)2 кислотой или основанием?

Принцип дополнительности . Открытие дуализма «волна-частица» в квантовой физике потребовало для его объяснения больших усилий выдающихся физиков. В 1927 г. нобелевский лауреат Н. Бор сформулировал принцип дополнительности, согласно которому, для полного описания квантово-механических явлений необходимо применять два взаимоисключающих («дополнительных») набора классических понятий, совокупность которых даёт исчерпывающую информацию об этих явлениях как о целостных.

Тейяр де Шарден утверждал, что какой-либо феномен, точно установленный хотя бы в одном месте, в силу фундаментального единства мира имеет повсеместные корни и всеобщее содержание. Действительно, необходимость использования для целостного описания химических свойств вещества набора различных, в том числе и противоположных терминов, установлена в химии еще в XIX веке.

История науки свидетельствует о том, что многие открытия химиков стимулировали развитие и становление новых разделов физики. Ряд явлений, например, высокотемпературная сверхпроводимость до настоящего времен не имеет общепринятого теоретического объяснения. Не до конца выявлена природа химической связи в металлокластерах, первый представитель которых Ta 6 Cl 14 .7H 2 O был получен в 1907 г. Между тем, в перспективе ожидается открытие порядка 10 9 индивидуальных соединений этого класса . В отмечено, что "структурная химия кластеров соединяет новизну строительных принципов и совершенство геометрических форм молекул и ионов, содержащих неслыханные для прочих классов веществ, фрагменты: полиэдры из атомов металла, скрепленные связями металл-металл".

Известно, что для адекватной фиксации знания в языковой реальности необходимо множество языков. Ю.М. Лотман подчеркнул : «Минимальной работающей структурой является наличие двух языков и их неспособность, каждого в отдельности, охватить внешний мир. Сама эта неспособность есть не недостаток, а условие существования, именно она диктует необходимость другого (другой личности, другого языка, другой культуры). Представления об оптимальной модели с одним предельно совершенным языком заменяется образом структуры с минимально двумя, а фактически с открытым списком разных языков, взаимно необходимых друг другу в силу неспособности каждого в отдельности выразить мир. Языки эти как накладываются друг на друга, по-разному отражая одно и то же, так и располагаются «в одной плоскости», образуя в ней внутренние границы. Их взаимная непереводимость (или ограниченная переводимость) является источником адекватности внеязыкового объекта его отражению в мире языков».

Рассмотрение химии с позиций семиотики свидетельствует о том, что эта наука имеет свои методы исследования вещества как специфической знаковой системы, а также проблемно ориентированный язык и прагматику. Нобелевский лауреат Н.Н. Семенов подчеркнул, что "химические превращения, то есть процессы получения из определенных веществ (сырья) новых веществ (продуктов), обладающих существенно новыми свойствами, являются основным и наиболее характерным предметом химии и как науки, и как производства" .

Таким образом, свойства вещества исследуются методами и химии, и физики, что соответствует принципу дополнительности и необходимости использования для познания мира и фиксации результатов в языковой реальности нескольких языков.

Рецензенты:

Щербаков В.В., д.х.н., профессор, декан факультета естественных наук, ФГБОУ ВПО «Российский химико-технологический университет имени Д.И. Менделеева», г.Москва.

Борман В.Д., д.ф.-м.н., профессор, заведующий кафедрой, Национальный исследовательский ядерный университет «МИФИ», г. Москва.

Голубев А.М., д.х.н., профессор, зав. кафедрой химии, МГТУ им. Н.Э. Баумана, г.Москва.

Библиографическая ссылка

Ананьева Е.А., Наговицына О.А., Сергиевский В.В. О ВЗАИМОСВЯЗИ ХИМИИ И ФИЗИКИ: ПРИНЦИП ДОПОЛНИТЕЛЬНОСТИ // Современные проблемы науки и образования. – 2014. – № 3.;
URL: http://science-education.ru/ru/article/view?id=13807 (дата обращения: 03.09.2019). Предлагаем вашему вниманию журналы, издающиеся в издательстве «Академия Естествознания»

Статьи по теме