Мембранная дистилляция опреснения воды. Опреснение морской воды в израиле. Вкус опресненной воды

Дефицит пресной воды остро ощущается на территории более 40 стран, расположенных в засушливых областях земного шара и составляющих около 60 % всей поверхности суши. Мировое потребление воды в начале XXI века достигло 120-150 × 109 м3/год. Растущий мировой дефицит пресной воды может быть скомпенсирован опреснением соленых (солесодержание более 10 г/л) и солоноватых (2-10 г/л) океанических, морских и подземных вод, запасы которых составляют 98 % всей воды на земном шаре. В данной статье рассмотрены основы современных методов и технологий опреснения морской воды.

Пресная вода является ценной составной частью морской воды. Нехватка пресной воды все больше ощущается в индустриально развитых странах, таких как США и Япония, где потребность в пресной воде для бытовых нужд, сельского хозяйства и промышленности превышает имеющиеся запасы. В таких странах как Израиль или Кувейт, где уровень осадков очень низок, запасы пресной воды не соответствуют потребностям в ней, которые возрастают в связи с модернизацией хозяйства и приростом населения. В дальнейшем человечество окажется перед необходимостью рассматривать океаны как альтернативный источник воды.

Россия по ресурсам поверхностных пресных вод занимает первое место в мире . Однако, до 80 % этих ресурсов приходится на районы Сибири, Севера и Дальнего Востока. Всего около 20 % пресноводных источников расположено в центральных и южных областях с самой высокой плотностью населения и высокоразвитыми промышленностью и сельским хозяйством. Некоторые районы Средней Азии (Туркмения, Казахстан), Кавказа, Донбасса, юго-восточной части РФ, обладая крупнейшими минерально-сырьевыми ресурсами, не имеют источников пресной воды. Вместе с тем, ряд районов нашей страны располагает большими запасами подземных вод с общей минерализацией от 1 до 35 г/л, не используемых для нужд водоснабжения из-за высокого содержания растворенных в воде солей. Эти воды могут стать источниками водоснабжения только при условии их дальнейшего опреснения.

Важным параметром морской воды при опреснении является соленость, под которой подразумевается масса (в граммах) сухих солей (преимущественно NaCl) в 1 кг морской воды. Средняя соленость вод мирового океана постоянна и составляет 35 г/кг морской воды .Наряду с NaCl в морской воде содержатся K+, Mg2+, Ca2+, Sr2+, Br-, F-, H3BO3 (табл. 1), которые можно получать из морской воды в промышленных масштабах. Среди других веществ, содержащихся в морской воде в концентрациях от 1 млн долей (миллионная доля) до 0,01 млн долей, встречаются литий Li, рубидий Rb, фосфор P, йод J, железо Fe, цинк Zn и молибден Mo . Кроме этих элементов в морской воде обнаружено около тридцати других элементов в более низких концентрациях .

Высокая концентрация солей делает морскую воду непригодной для питьевых и хозяйственных целей. Поэтому ее необходимо опреснять, т.е. проводить обработку с целью снижения концентрации растворенных солей до 1 г/л. Опреснение воды может осуществляться химическими (химическое осаждение, ионный обмен), физическими (дистилляция, обратный осмос или гиперфильтрация, электродиализ, вымораживание) и биологическими методами с использованием способности некоторых фотосинтезирующих водорослей избирательно поглощать NaCl из морской воды .

За последние годы были также предложены новые альтернативные методы опреснения морской воды за счет воздействия ультразвуком, акустическими, ударными волнами, электромагнитными полями и др. .Многообразие существующих методов получения пресной воды объясняется тем, что ни один из них не может считаться универсальным, приемлемым для данных конкретных условий. Характеристики методов опреснения, получивших наибольшее практическое применение, приводятся ниже.

Химическое осаждение
При химическом способе опреснения в морскую воду вводят специальные осаждающие реагенты, которые при взаимодействии с растворенными в ней ионами солей (хлориды, сульфаты), образуют нерастворимые, выпадающие в осадок соединения. Вследствие того, что морская вода содержит большое количество растворенных веществ, расход реагентов весьма значителен и составляет примерно 3-5 % количества опресненной воды. К веществам, способным образовывать нерастворимые соединения с ионами натрия (Na+) и хлора (Cl-),относятся соли серебра (Ag+) и бария (Ba2+), которые при обработке соленой воды образуют выпадающие в осадок хлористое серебро (AgCl) и сернокислый барий (BaSO4). Эти реагенты дорогостоящие, реакция осаждения с солями бария протекает медленно, соли бария токсичны. Поэтому химическое осаждение при опреснении воды используется очень редко.

Дистилляция
Дистилляция воды (перегонка) основана на различии в составе воды и образующегося из нее пара . Процесс осуществляется в специальных дистилляционных установках-опреснителях путем частичного испарения воды и последующей конденсации пара. В процессе дистилляции более летучий компонент (низкокипящий) переходит в паровую фазу в большем количестве, чем менее летучий (высококипящий). Поэтому при конденсации образовавшихся паров в дистиллят переходят низкокипящие, а в кубовый остаток — высококипящие компоненты. Если из исходной смеси отгоняется не одна фракция, а несколько, дистилляция называется фракционной (дробной). В зависимости от условий процесса различают простую и молекулярную дистилляцию .

Дистилляционная опреснительная установка (рис. 1) состоит из испарителя 1, снабженного теплообменным устройством для подвода к воде необходимого количества теплоты; нагревательного элемента 2 для частичной конденсации пара, выходящего из испарителя (при фракционной дистилляции); конденсатора 3 для конденсации отбираемого пара; насоса 4; сборников дистиллята 5 и кубового остатка 6. Современные дистилляционные опреснители подразделяются на одноступенчатые, многоступенчатые с трубчатыми нагревательными элементами, или испарителями, многоступенчатые с мгновенным вскипанием и парокомпрессионные .

Например, многоступенчатый испаритель (рис. 2) состоит из ряда последовательно работающих испарительных камер с трубчатыми нагревательными элементами. Нагреваемая соленая вода движется внутри трубок нагревательного элемента, греющий пар конденсируется на внешней поверхности. При этом нагрев и испарение воды в первой ступени осуществляются паром рабочего котла, работающего на дистилляте; греющим паром следующей ступеней служит вторичный пар предыдущей испарительной камеры. Данная установка способна вырабатывать около 0,9 т пресной воды на 1 т первичного пара.

Расход тепла на получение 1 кг пресной воды в одноступенчатом дистилляционном опреснителе составляет около 2400 кДж.В опреснителях с мгновенным вскипанием (рис. 3) соленая вода проходит последовательно через конденсаторы, встроенные в испарительные камеры, нагреваясь за счет тепла конденсации, затем поступает в главный подогреватель и нагревается выше температуры кипения воды в первой испарительной камере, где происходит процесс кипения. Затем пар конденсируется на поверхности трубок конденсатора, а конденсат стекает в конденсатор и насосом откачивается потребителю. Неиспарившаяся вода перетекает через гидрозатвор в следующую камеру с более низким давлением, где она снова вскипает, и т.д. Рекуперация тепла фазового перехода в многоступенчатом опреснителе позволяет снизить расход тепла по сравнению с одноступенчатым дистилляционным опреснителем на 1 кг пресной воды до 250-300 кДж. Основным преимуществом многоступенчатых дистилляционных опреснительных установок является то, что на единицу первичного пара можно получить значительно большее количество обессоленной воды. Так при одноступенчатом испарении на 1 т первичного пара получают около 0,9 т опресненной воды, а на установках, имеющих 50-60 ступеней — 15-20 т опресненной воды. Удельный расход электроэнергии в дистилляционных установках составляет 3,5-4,5 кВт⋅ч/м3 дистиллята.

Осуществление любого варианта процесса дистилляции связано с большими затратами тепловой энергии, составляющими 40 % от стоимости получаемой воды (если проводить дистилляцию в вакууме, температура кипения воды понижается до 60 °C, и дистилляция требует меньших тепловых затрат). В качестве источников тепловой энергии используются атомные и тепловые электростанции. Сочетание дистилляционной установки с тепловой электростанцией на минеральном или ядерном топливе (т.н. «многоцелевая энергетическая установка») позволяет обеспечить промышленный район всеми видами энергетических услуг по минимальной себестоимости при наиболее рациональном использовании топлива. В пустынных южных районах и на безводных островах применяются солнечные опреснители, которые производят в летние месяцы около 4 л воды в сутки с 1 м2 поверхности, воспринимающей солнечную радиацию.

Эффективность работы дистилляционных испарителей ограничена образованием накипи в системе циркуляции горячего рассола. По мере выпаривания морской воды из дистилляционного опреснителя раствор соли становится более концентрированным и в конечном итоге осаждается на стенках аппарата в виде накипи из солей жесткости, состоящих, главным образом, из хлоридов и карбонатов кальция (CaCO3, CaCl2) и магния (MgCO3, MgCl2) , что ухудшает теплопроводность стенок теплообменника, приводит к разрушению труб и теплообменного оборудования. Это требует применения специальных антинакипных добавок, что существенно увеличивает энергозатраты на проведение дистилляции до 10 кВт⋅ч/м3 обессоленной воды. Поэтому в последние годы предложены другие способы опреснения морской воды, которые не связаны с необходимостью ее испарения и конденсации.

Ионный обмен
Метод основан на свойстве твердых полимерных смол разной степени сшивки, ковалентно связанных с ионогенными группами (иониты), обратимо обмениваться ионами растворенных в воде солей (противоионы) .В зависимости от заряда иониты подразделяются на положительно заряженные катиониты (H+) и отрицательно заряженные аниониты (OH-). В катионитах — веществах, аналогичным кислотам — анионы представлены в виде нерастворимых в воде полимеров, а катионы (Na+) подвижны и обмениваются с катионами растворов. В противоположность катионитам, аниониты по химической структуре являются основаниями, нерастворимую структуру которых образуют катионы. Их анионы (обычно гидроксильная группа ОН-) способны обмениваться с анионами растворов.

Процесс ионообменного опреснения воды заключается в последовательном прохождении воды через неподвижный слой ионита в периодическом процессе или противоточным движением воды и ионита в непрерывном процессе (рис. 4). В этом процессе катионы и анионы солей обрабатываемой воды последовательно связываются с ионитами, в результате происходит ее обессоливание. Соотношение ионита, анионита и катионита обычно составляет от 1:1 до 1,5:1,0 по массе .

Кинетика ионного обмена включает три последовательные стадии: перемещение сорбируемого иона к поверхности глобулы ионита (1), ионный обмен (2), перемещение вытесняемого иона внутри глобулы ионита и от его поверхности в растворе (3) .

На скорость ионного обмена влияют следующие факторы: доступность фиксированных ионов внутри каркаса ионита, размер гранул ионита, температура, концентрация раствора . Общая скорость процесса ионного обмена определяется совокупностью процессов, происходящих в растворе (диффузия противоионов к грануле и от гранулы ионита) и в ионите (диффузия противоионов от поверхности к центру гранулы ионита и в обратном направлении; обмен противоионов ионита на противоионы из раствора). В условиях, приближенных к реальным условиям очистки воды, лимитирующим фактором, определяющим скорость ионного обмена, является диффузия ионов внутри гранулы ионита.

Обменная способность ионообменных смол постепенно снижается, и, в конечном итоге, исчерпывается. В этом случае требуется регенерация раствором кислоты (катионит) или щелочи (анионит), что восстанавливает исходные химические свойства смол. Катионит регенерируется 5 %м раствором H2SO4, которую пропускают последовательно через катионит до появления кислой реакции. Удельный расход серной кислоты 55-60 г/гэкв сорбированных катионов. Анионит регенерируется 5 %м раствором CaCO3 или NaOH с расходом 70-75 г на 1 гэкв задержанных анионов.

Ионный обмен применяется для получения обессоленной и умягченной воды в тепловой и атомной энергетике и в промышленности; в цветной металлургии при комплексной гидрометаллургической переработке руд, в пищевой промышленности, в медицинской промышленности при получении антибиотиков и других лекарственных средств, а также для очистки сточных вод в целях организации оборотного водоснабжения. В настоящее время также разрабатываются ионообменные методы комплексного извлечения из океанской воды ценных минералов .

Промышленные аппараты для реализации ионного обмена подразделяются на три группы: установки типа смесителей-отстойников, установки с неподвижным и подвижным слоями ионита. Аппараты первого типа чаще всего используют в гидрометаллургии. В аппаратах с неподвижным слоем ионита исходные и обессоленные растворы подаются в одном направлении (поточные схемы) или в противоположных (противоточные схемы). Такие аппараты используются для ионообменной очистки растворов, при умягчении и обессоливании морской воды. В непрерывно действующих противоточных аппаратах подвижный ионит перемещается сверху вниз под действием силы тяжести. Конструктивно противоточные аппараты подразделяются на три группы: со взвешенным или кипящим слоем ионита, с непрерывным движущимся слоем ионита и с движущимся раствором через ионит. В зависимости от заданной степени обессоливания воды проектируют одно, двух и трехступенчатые ионообменные установки. Остаточное солесодержание при одноступенчатом ионообменном опреснении составляет 20 мг/л. Для получения воды с солесодержанием до 0,5 мг/л применяют установки с двухступенчатой схемой Н+ и ОН-ионирования.

Ионообменный способ опреснения воды имеет ряд достоинств: простота оборудования, малый расход исходной воды на собственные нужды (15-20 % производительности установки), малый расход электроэнергии, малый объем сбросных вод.

Недостаток ионообменного метода — сравнительно высокий расход реагентов, технологическая сложность процесса, который лимитируется исходным уровнем солесодержания обрабатываемой воды, определяющегося экономическими затратами. Рентабельность ионного обмена при опреснении воды обычно ограничивается исходным содержанием растворенных солей 1,5-2,5 г/л. Однако, при необходимости, когда себестоимость воды не играет существенной роли, этим методом можно опреснять воду с достаточно высоким солесодержанием. Продолжение в следующем номере.

1. Алекин О.А. Химия океана. — Л., 1966.
2. Хорн Р. Морская химия. — M., 1972.
3. Монин А.С. Океанология. Химия океана. — М., 1979.
4. Виноградов А.П. Геохимия океана. — М., 1989.
5. Kimm Y, Logan B.E., Electrodialysis Cells for Partial or Complete Seawater Desalination // Environmental Science and Technology, 2011, V. 12.
6. Абдулкеримов С.А., Богданов В.П., Годин С.М. Опытные исследования энергоинформационных воздействий излучений генератора продольных электромагнитных волн с водой // Электродинамика и техника СВЧ и КВЧ, №3(8)/2000.
7. Коган В.Г. Теоретические основы типовых процессов химической технологии. — Л., 1977.
8. Сийрде Э.К. Дистилляция. — М., 1991.
9. Гельперин Н.И. Основные процессы и аппараты химической технологии. — М., 1981.
10. Мосин О.В. Магнитные системы обработки воды. Основные перспективы и направления // Сантехника, №1/2011.
11. Кокотов Ю.А. Иониты и ионный обмен. — Л., 1980.
12. Горшков В.И., Сафонов М.С., Воскресенский Н.М. Ионный обмен в противоточных колоннах. — М., 1981.
13. Сенявин М.М. Ионный обмен. — М., 1981.
14. Батлер Дж.Н. Ионные равновесия. — Л., 1973.
15. Слесаренко В.Н. Современные методы опреснения морских и соленых вод. — М., 1973.
16. Дытнерский Ю.И. Обратный осмос и ультрафильтрация. — М.: Химия, 1978.
17. Свитцов А.А. Введение в мембранные технологии. — М.: «ДеЛи принт», 2006.
18. Орлов Н.С. Промышленное применение мембранных процессов. — М.: РХТУ им. Д.И. Менделеева, 2007.
19. Каграманов Ш.Г. Диффузионные мембранные процессы. Ч. 2. — М.: РХТУ им. Д.И. Менделеева, 2007.
20. Кульский Л.А. Опреснение воды. — К., 1980.
21. Орехов И.И., Обрезков Д.И. Вымораживание. Холод в процессах химической технологии. — Л., 1980.
22. Пап Л. Концентрирование вымораживанием. — М., 1982.
23. Алиев А.М., Юсифов Р.Ю., Кулиев А.Р., Юсифов Ю.Г. Применение методики гидратообразования для оценки обессоливания воды // Прикладная химия, №51(4)/2008.
24. Мосин О.В. Исследование методов биотехнологического получения аминокислот, белков и нуклеозидов, меченных стабильными изотопами 2Н и 13С с высокими уровнями изотопного обогащения. Автореф. дисс. к.х.н. — М.: МГАТХТ им. М.В. Ломоносова, 1996.

Планета Земля имеет огромные запасы воды, но основная ее часть входит в состав мирового океана и является соленой . Качество морской воды не позволяет использовать ее в чистом виде для промышленных сельскохозяйственных и тем более для пищевых целей. В составе морской воды в растворенном виде присутствует более 50 элементов системы Менделеева. Концентрация каждого элемента в отдельности крайне ничтожна, но все вместе они определяют показатель, из-за которого морскую воду называют соленой. , пригодная для пищевых целей должна содержать солей не более 0,002 г/мл. Для достижения такой концентрации разработано большое количество способов, главная цель которых очистить морскую воду от солей и очистить ее. Главная задача разработчиков состоит в том, чтобы найти способ, который имел бы низкое потребление энергии и максимально полную очистку, после которой вода могла бы использоваться населением.

Способы опреснения

Сегодня существуют такие методы опреснения как дистилляция, обратный осмос, ионизация и электродиализ, которые можно использовать в промышленных масштабах.

  • Самым популярным способом является обычная или многостадийная дистилляция , при которой используется свойство закипания и парообразования при высоких температурах. Более половины опресненной воды получают именно таким способом.
  • Мембранная дистилляция , метод, при котором производится нагрев воды с одной стороны мембраны, которая пропускает только пар и образует из него пресную воду.
  • Метод обратного осмоса относительно дешевый, так как один вложенный доллар позволяет получить 16 тон пресной воды. Прилагая к морской воде давление, и продавливая ее через мельчайшие фильтры можно получить пресную воду с низким содержанием солей. Производительность мембраны и степень опреснения зависят от многих факторов: от количества содержания соли в исходном сырье, солевого состава, температуры и давления.
  • Использование диализа , при котором вода проходит через камеру с электродами, приводит к тому, что катионы и анионы распределяются на соответствующих электродах. Преимущество электродиализа состоит в том, что в процессе используются химически и термически стойкие мембраны, это дает возможность проводить опреснение при высоких температурах.
  • Газогидратный метод основан на способности углеродных газов при определенном давлении и температуре, создавать, с участием воды, соединения клатратного типа. Замороженную соленую воду обрабатывают гидрат образующим газом, после чего формируются кристаллы. После отделения их от рассола, кристаллы промывают и плавят, получая чистую .
По данным Википедии:
  • испарение (дистилляция), в том числе:замораживание ;
    • обычная дистилляция;
    • многостадийная флеш-дистилляция;
    • дистилляция под низким давлением (вакуумная дистилляция);
  • гидродинамическое разделение (сепарация).

Для опреснения в южных регионах используют солнечные опреснители, в которых морская мода нагревается и испаряется. Существует и совершенно противоположный способ, при котором просто замораживают морскую воду, вернее замораживают и отделяют пресную, так как она замерзает быстрее, чем морская.

Промышленное опреснение

Недостаток в чистой питьевой воде испытывают в более чем 80 странах мира. Этот кризис спровоцирован ростом промышленного производства, ростом численности населения, ухудшением экологической обстановки во всем мире и планетарных изменений в климате. Мировое сообщество стоит на грани острого дефицита пресной воды. В такой ситуации особенно остро встает вопрос поиска альтернативных технологий по пополнению запасов пресной воды. Самым оптимальным считается путь опреснения вод мирового океана. Целесообразность этого пути ученые видят в том, что большое количество населения проживает в прибрежной зоне, имея доступ свободный к практически бесплатному ресурсу.

Опреснительные станции строят во многих странах, где ощущается недостаток в питьевой воде, например в Кувейте, Саудовской Аравии, Израиле, Объединенные Арабские эмираты, США (Калифорния). Самые мощные опреснительные установки расположены на Ближнем Востоке, например в Саудовской Аравии таких установок семь и каждая из них может производить до 400000 кубометров пресной воды в сутки. Рынок производства постоянно расширяется. Такие государства как Австралия, Испания и Алжир разрабатывают масштабные программы государственной поддержки по стимулированию промышленного производства пресной воды.

Россия в этом вопросе значительно отстает, рынок опреснительной промышленности у нас не развит. Климатическое и географическое расположение страны позволяет не стремиться в лидеры государств, вкладывающих огромные средства в опреснение воды. Но природа всегда оставляет последнее слово за собой и выносит свой вердикт. Наличие таких проблемных зон как Ставрополье, Волгоградская область, Прикаспийский регион и оренбургские степи не дает возможности забывать о дефиците пресной воды.

Альтернативные возможности

  • Антарктида дает надежду. Пока ученые ломают голову над новыми промышленными способами опреснения морской воды, другая часть светлых голов повернулась в сторону Антарктиды. Существует проекты, основывающиеся на идее транспортировки ледяных глыб с пресной водой прямо в Средиземное море. Расчеты показывают, что транспортировка льдины, размер которой равен футбольному полю, может быть осуществлен не менее чем за год, так как более высокая скорость сопровождающего каравана не возможна технически. Существуют и другие проекты, которые предусматривают измельчение реликтового айсберга и доставку его в измельченном виде в трюмах.
  • Регенерация воды. Для районов, которые расположены в большой отдаленности от морского побережья и где нет других источников пресной воды, найти альтернативные варианты довольно трудно. Здесь люди полагаются только на восстановление воды. Сбор сточных и поверхностных вод, возврат их в оборот может стать идеальным вариантом при получении воды. Этот способ используется при ирригации земель. Сбор дождевой воды, целенаправленный захват и последующее хранение в подземных хранилищах, позволяет решить проблему пусть даже в незначительной ее части.

Судовые опреснители

Для решения проблемы опреснения морской воды в мировом масштабе требуется согласие и взаимопонимание ученых, бизнесменов и политиков из разных стран. Более мелкие проблемы, такие как судовые опреснительные установки, решаются сегодня на уровне промышленных предприятий, занимающихся машиностроением. Судовые очистители-опреснители с мембранными фильтрами, это самое идеальное решения для оснащения морского судна в целях получения пресной воды в период длительного пребывания в плавании. Потребность в таких установках растет с каждым днем, и не только из-за того, что выросло количество судов, яхт и подводных лодок. Такие установки используются и в прибрежных зонах, в местности, где имеется повышенная солоноватость воды в устье реки или в озере.

Бытовые опреснители – дистилляторы

Бытовые опреснители используются для очистки и опреснения воды в бытовых условиях, в лабораториях, автосалонах, лечебных учреждениях и в косметических салонах. Бытовые дистилляторы работают по принципу круговорота воды в природе: нагревание, преобразование в пар, испарение и охлаждение. Этот метод позволяет получить мягкую и чистую воду.

Нехватка воды: миф или реальность?

Существующие разнообразные способы опреснения забортной морской воды можно разделить на две основные группы:

  1. опреснение без изменения агрегатного состояния жидкости (воды);
  2. опреснение, связанное с промежуточным переходом жидкого агрегатного состояния в твердое или газообразное (паровое).

Опреснение способами первой группы включает в себя такие виды, как химическое, электрохимическое, ультрафильтрация.

При химическом способе опреснения в воду вводят вещества, называемые реагентами, которые, взаимодействуя с находящимися в ней ионами солей, образуют нерастворимые, выпадающие в осадок вещества. Вследствие того что морская вода содержит большое количество растворенных веществ, расход реагентов весьма значителен и составляет примерно 3 - 5% количества опресненной воды. К веществам, способным образовывать нерастворимые соединения с натрием и хлором, относятся ионы серебра и бария, которые образуют выпадающие в осадок хлористое серебро и сернокислый барий. Эти реагенты дорогие, реакция осаждения с солями бария протекает медленно, соли ядовиты. Поэтому химическое опреснение используется редко.

При электрохимическом опреснении (электродиализе) применяют специальные электрохимические активные диафрагмы, состоящие из пластмассы, резины с наполнителем и анионитовых или катионитовых смол. Ванна с рассолом ограничена двумя диафрагмами: положительной и отрицательной. Под действием постоянного тока напряжением 110 - 120 В ионы солей, растворенных в воде, устремляются к электродам. Положительные катионы через катионопроницаемые диафрагмы, а анионы через анионитовую диафрагму проходят в крайние камеры, где встречаются с двумя пластинами: анодом и катодом. Встречаясь с одноименно заряженными диафрагмами, они остаются в этих камерах. В результате в промежуточных камерах оказывается обессоленная вода, которая стекает в отдельный сборник. Соли и рассолы из крайних камер отводятся за борт, а образующиеся газы (хлор и кислород) - в атмосферу.

Камеры, в которых опресняется вода, отделены от рассольных камер полупроницаемыми ионитовыми мембранами.

При достаточном количестве пар мембран между анодом и катодом расход электроэнергии зависит от солености морской и опресненной воды: чем меньше разница между ними, тем процесс протекает экономичнее. Поэтому злектродиализ целесообразно применять для опреснения слабосоленых вод при допустимом высоком солесодержании опресненной воды (500 - 1000 мг/л). На судах, где требования к солесодержанию достаточно высокие, электродиализные опреснители не находят применения. Опытная электродиализная установка эксплуатировалась на траулере «Ногинск».

Опреснение ультрафильтрацией или так называемым способом обратного осмоса состоит в том, что солевой раствор оказывается под давлением со стороны мембраны, проницаемой для воды и непроницаемой для соли. Пресная вода проникает через мембрану в направлении, обратном обычному осмотическому (когда пресная вода вследствие осмотического давления проникает через мембрану в солевой раствор). В существующих установках производительностью около 4 м 3 /сут соленая вода под давлением около 150 кгс/см 2 продавливается через мембраны ацетилцеллюлозного типа, обработанные перхлоратом магния для увеличения их водопроницаемости. С противоположной давлению стороны мембран установлены пористые бронзовые плиты, способные выдержать большое давление. При испытаниях установки с 1,5%-ным солевым раствором была получена вода с солесодержанием 600 - 1000 мг/л Сl. Применение ультрафильтрации как способа опреснения ограничивается малым сроком службы пленок-мембран и большими размерами фильтрующей поверхности.

К методам опреснения второй группы, относятся вымораживание и дистилляция, или термическое опреснение.

Опреснение вымораживанием основано на том, что в естественных природных условиях лед, образующийся в океанах и морях, является пресным. При искусственном медленном замораживании соленой морской воды вокруг ядер кристаллизации образуется пресный лед игольчатой структуры с вертикальным расположением игл льда. При этом в межигольчатых каналах концентрация раствора, а следовательно, и его плотность, повышаются, и он, как более тяжелый, по мере вымораживания оседает вниз. При растаивании игольчатого льда образуется пресная вода с содержанием солей 500 - 1000 мг/л Сl. При быстром замораживании рассол оказывается включенным в толщу льда, и сильное и интенсивное охлаждение приводит к замерзанию всей массы соленого раствора в единое ледяное тело.

Для лучшего опреснения морского льда иногда применяется искусственное плавление его части при температуре ~20°С. Вода, образующаяся при таянии, способствует более полному вымыванию солей из льда. Способ вымораживания достаточно прост и экономичен, но требует сложного и громоздкого оборудования.

Дистилляция, или термическое опреснение , - наиболее распространенный на морских судах способ получения пресной воды из забортной морской. Как известно, морская вода представляет собой раствор, состоящий из воды - летучего растворителя и солей - нелетучего растворенного в воде твердого вещества. Сущность дистилляции заключается в том, что забортную воду нагревают до кипения и выходящий пар собирают и конденсируют. Образуется пресная вода, называемая дистиллятом . Выпаривать воду можно как при кипении, так и без кипения. В последнем случае морскую воду нагревают при более высоком давлении, чем давление в камере испарения, куда направляется вода. Так как при этом температура воды превышает температуру насыщения, соответствующую давлению в камере испарения, то часть поступившей воды превращается в пар, который и конденсируется в дистиллят. Для парообразования используется теплота, содержащаяся в самой испаряемой воде, которая при этом охлаждается до температуры насыщения оставшегося рассола. Основное термодинамическое различие между процессами заключается в следующем: при кипящем процессе теплота подводится от внешнего источника и поддерживает температуру насыщения при данном постоянном давлении в испарителе, т. е. процесс является изотермическим ; при некипящем процессе теплота подводится к морской воде без кипения до температуры выше температуры насыщения, соответствующей давлению в испарителе, и, следовательно, процесс испарения идет за счет внутренней теплоты и является адиабатным . Недостатком термического опреснения избыточного давления является его малая экономичность: на получение 1 кг дистиллята расходовалось до 700 ккал, что соответствует выходу 10 - 12 т дистиллята на 1 т расходуемого топлива. Этот недостаток удалось преодолеть применением вакуумных испарителей с использованием утилизационной теплоты двигателей внутреннего сгорания и парогенераторов.

Дистилляция, как уже было отмечено, - основной способ опреснения морской воды, применяемый на судах промыслового флота, и поэтому в дальнейшем будут рассмотрены только опреснительные установки, работающие на термическом опреснении.

В настоящее время исследуются новые способы водоопреснения, в частности путем образования кристаллогидратов и при помощи гидрофобного теплоносителя.

Принцип кристаллогидратов заключается в выделении пресной воды из соленых растворов в форме кристаллов, которые в специальном расплавителе разлагаются на чистую воду и гидрат-агент. В качестве гидрат-агентов для повторного использования в процессе используются такие вещества, как метилбромидгидраты, метилхлоридгидраты, гидраты изо-бутана.

Сущность гидрофобного теплоносителя заключается в том, что различные смеси углеводородов, парафины, фторированные масла и другие вещества, инертные по отношению к воде и растворенным в ней солям, впрыскивают в теплонесущий дистиллят для нагрева. После этого дистиллят и теплоноситель разделяют и последний впрыскивают в морскую воду. При нагреве часть воды испаряется и образующийся пар в конденсаторе превращается в дистиллят. Гидрофобный теплоноситель отделяют от оставшегося после выпаривания рассола и возвращают в теплонесущий дистиллят для последующего нагрева.

Нехватка пресной воды все больше ощущается во всем мире, даже в США и странах Европы. А в таких странах, как Израиль или Иран запасов пресной воды совершенно не хватает для нужд населения и производства. Существует мнение, что в конце концов человечество окажется перед необходимостью добычи пресной воды из вод мирового океана.

Опреснение морской воды - это процесс снижения уровня солей в воде. В нормальной морской воде содержание солей порядка 3,5 процентов, а в воде, которая пригодна для питья, этот уровень не должен превышать 0,05 процента. Также не стоит забывать, что после опреснения обязательно будет требоваться очистка воды от кальция и вредных составляющих, следовательно, необходимо использовать установки для водоочистки.

Водоочистка - серьезная задача при подготовке обычной пресной воды для использования человеком, а очистка опресненной воды - задача еще более сложная. Водоочистка морской воды сложна, потому что уровень содержащихся в морской воде микроорганизмов и их разнообразие гораздо выше, нежели в пресной воде. Более того, очистка морской воды еще осложняется тем, что в морской воде растворено гораздо больше химических соединений, чем в пресной и концентрация их гораздо выше. Все вышеперечисленное говорит о том, что водоочистка морской воды - процесс не менее сложный и важный, чем водоочистка пресной воды.

Существует несколько методов опреснения и последующей очистки морской воды. Одним из этих методов является метод дистилляции.

Дистилляция, или перегонка, основана на том, что вода - вещество летучее, а растворенные в ней соли - нелетучие. Морскую воду нагревают до температуры кипения, в результате чего образуется водяной пар, полученный пар забирается и охлаждается, в результате остается обычная вода. Но при использовании данного способа опреснения морской воды существуют несколько проблем, и самая основная проблема состоит в том, что при выпаривании соляной раствор, остающийся в дистилляторе, с каждым разом становится все более концентрированным. Это приводит к выходу из строя трубопроводов и самого дистиллятора, для решения этой проблемы используют многокамерные дистилляторы, а также часть опресненной воды сбрасывается с соляным раствором в море, а на ее место набирают новую порцию воды. Перед и после процесса дистилляции морская вода проходит процесс предварительной водоочистки.

Еще один способ опреснения морской воды и очистки ее от примесей является - . При использовании данного метода водоочистка и опреснение воды происходит при помощи мембраны, проницаемой для воды и в тоже время непроницаемой для солей и иных примесей, растворенных в морской воде, при помощи . Недостатком данного метода очистки и опреснения морской воды является малое количество получаемой пресной воды. Проблема в том, что морскую воду необходимо подавать на мембрану под давлением для того чтобы через мембрану просачивалась чистая вода, а соли оставались на обратной стороне фильтра. Установка по опреснению и очистке морской воды обычно представляет собой множество тонких трубок, стенки которых выложены изнутри ацетатом целлюлозы, морская вода подается в трубки под давлением, достаточным для того чтобы пресная вода просачивалась через фильтр. Такое давление называется осмотическим, необходимо следить за тем, чтобы оно не превысило допустимые величины, иначе мембрана может порваться или начать пропускать соли, растворенные в морской воде.

Также существуют другие методы опреснения морской воды , например, метод заморозки. Метод основан на том, что при превращении морской воды в лед, соли, растворенные в ней, в лед не попадают.

Как говорилось ранее, уделяя особое внимание процессу опреснения морской воды , нельзя забывать об очистке уже полученной пресной воды. Водоподготовка полученной воды в большинстве своем не отличается от процесса фильтрации и очистки обычной воды. Для очистки воды применяются фильтры грубой очистки, тонкой очистки и фильтры химической и биологической водоочистки.

К сожалению, на данный момент пока все еще не существует достаточно дешевого и эффективного метода опреснения морской воды , способного обеспечить все более возрастающие потребности человечества в пресной воде. Применяемые в данный момент методы опреснения морской воды или неэффективны, или стоимость получаемого литра опресненной воды слишком велика для использования в промышленных масштабах.

Планета Земля имеет огромные запасы воды, но основная ее часть входит в состав мирового океана и является соленой морской водой. Качество морской воды не позволяет использовать ее в чистом виде для промышленных сельскохозяйственных и тем более для пищевых целей. В составе морской воды в растворенном виде присутствует более 50 элементов системы Менделеева. Концентрация каждого элемента в отдельности крайне ничтожна, но все вместе они определяют показатель, из-за которого морскую воду называют соленой. Вода, пригодная для пищевых целей должна содержать солей не более 0,002 г/мл. Для достижения такой концентрации разработано большое количество способов, главная цель которых очистить морскую воду от солей и очистить ее. Главная задача разработчиков состоит в том, чтобы найти способ, который имел бы низкое потребление энергии и максимально полную очистку, после которой вода могла бы использоваться населением.

Способы опреснения

Сегодня существуют такие методы опреснения как дистилляция, обратный осмос, ионизация и электродиализ, которые можно использовать в промышленных масштабах.

  • Самым популярным способом является обычная или многостадийная дистилляция , при которой используется свойство закипания и парообразования при высоких температурах. Более половины опресненной воды получают именно таким способом.
  • Мембранная дистилляция , метод, при котором производится нагрев воды с одной стороны мембраны, которая пропускает только пар и образует из него пресную воду.
  • Метод обратного осмоса относительно дешевый, так как один вложенный доллар позволяет получить 16 тон пресной воды. Прилагая к морской воде давление, и продавливая ее через мельчайшие фильтры можно получить пресную воду с низким содержанием солей. Производительность мембраны и степень опреснения зависят от многих факторов: от количества содержания соли в исходном сырье, солевого состава, температуры и давления.
  • Использование электродиализа , при котором вода проходит через камеру с электродами, приводит к тому, что катионы и анионы распределяются на соответствующих электродах. Преимущество электродиализа состоит в том, что в процессе используются химически и термически стойкие мембраны, это дает возможность проводить опреснение при высоких температурах.
  • Газогидратный метод основан на способности углеродных газов при определенном давлении и температуре, создавать, с участием воды, соединения клатратного типа. Замороженную соленую воду обрабатывают гидрат образующим газом, после чего формируются кристаллы. После отделения их от рассола, кристаллы промывают и плавят, получая чистую пресную воду.

Для опреснения в южных регионах используют солнечные опреснители, в которых морская мода нагревается и испаряется. Существует и совершенно противоположный способ, при котором просто замораживают морскую воду, вернее замораживают и отделяют пресную, так как она замерзает быстрее, чем морская.

Промышленное опреснение

Недостаток в чистой питьевой воде испытывают в более чем 80 странах мира. Этот кризис спровоцирован ростом промышленного производства, ростом численности населения, ухудшением экологической обстановки во всем мире и планетарных изменений в климате. Мировое сообщество стоит на грани острого дефицита пресной воды. В такой ситуации особенно остро встает вопрос поиска альтернативных технологий по пополнению запасов пресной воды. Самым оптимальным считается путь опреснения вод мирового океана. Целесообразность этого пути ученые видят в том, что большое количество населения проживает в прибрежной зоне, имея доступ свободный к практически бесплатному ресурсу.

Опреснительные станции строят во многих странах, где ощущается недостаток в питьевой воде, например в Кувейте, Саудовской Аравии, Израиле, Объединенные Арабские эмираты, США (Калифорния). Самые мощные опреснительные установки расположены на Ближнем Востоке, например в Саудовской Аравии таких установок семь и каждая из них может производить до 400000 кубометров пресной воды в сутки. Рынок производства постоянно расширяется. Такие государства как Австралия, Испания и Алжир разрабатывают масштабные программы государственной поддержки по стимулированию промышленного производства пресной воды.

Россия в этом вопросе значительно отстает, рынок опреснительной промышленности у нас не развит. Климатическое и географическое расположение страны позволяет не стремиться в лидеры государств, вкладывающих огромные средства в опреснение воды. Но природа всегда оставляет последнее слово за собой и выносит свой вердикт. Наличие таких проблемных зон как Ставрополье, Волгоградская область, Прикаспийский регион и оренбургские степи не дает возможности забывать о дефиците пресной воды.

Альтернативные возможности

  • Антарктида дает надежду. Пока ученые ломают голову над новыми промышленными способами опреснения морской воды, другая часть светлых голов повернулась в сторону Антарктиды. Существует проекты, основывающиеся на идее транспортировки ледяных глыб с пресной водой прямо в Средиземное море. Расчеты показывают, что транспортировка льдины, размер которой равен футбольному полю, может быть осуществлен не менее чем за год, так как более высокая скорость сопровождающего каравана не возможна технически. Существуют и другие проекты, которые предусматривают измельчение реликтового айсберга и доставку его в измельченном виде в трюмах.
  • Регенерация воды. Для районов, которые расположены в большой отдаленности от морского побережья и где нет других источников пресной воды, найти альтернативные варианты довольно трудно. Здесь люди полагаются только на восстановление воды. Сбор сточных и поверхностных вод, возврат их в оборот может стать идеальным вариантом при получении воды. Этот способ используется при ирригации земель. Сбор дождевой воды, целенаправленный захват и последующее хранение в подземных хранилищах, позволяет решить проблему пусть даже в незначительной ее части.

Судовые опреснители

Для решения проблемы опреснения морской воды в мировом масштабе требуется согласие и взаимопонимание ученых, бизнесменов и политиков из разных стран. Более мелкие проблемы, такие как судовые опреснительные установки, решаются сегодня на уровне промышленных предприятий, занимающихся машиностроением. Судовые очистители-опреснители с мембранными фильтрами, это самое идеальное решения для оснащения морского судна в целях получения пресной воды в период длительного пребывания в плавании. Потребность в таких установках растет с каждым днем, и не только из-за того, что выросло количество судов, яхт и подводных лодок. Такие установки используются и в прибрежных зонах, в местности, где имеется повышенная солоноватость воды в устье реки или в озере.

Бытовые опреснители - дистилляторы

Бытовые опреснители используются для очистки и опреснения воды в бытовых условиях, в лабораториях, автосалонах, лечебных учреждениях и в косметических салонах. Бытовые дистилляторы работают по принципу круговорота воды в природе: нагревание, преобразование в пар, испарение и охлаждение. Этот метод позволяет получить мягкую и чистую воду.


Создан 15 дек 2013


Статьи по теме