Математики история. Анализ математический История развития математического анализа кратко

1.Период создания математики переменных величин. Создание аналитической геометрии, дифференциального и интегрального исчисления

В XVII в. начинается новый период истории математики - период математики переменных величин. Его возникновение связано, прежде всего, с успехами астрономии и механики.

Кеплер в 1609-1619 гг. открыл и математически сформулировал законы движения планет. Галилей к 1638 г. создал механику свободного движения тел, основал теорию упругости, применил математические методы для изучения движения, для отыскания закономерностей между путем движения, его скоростью и ускорением. Ньютон к 1686 г. сформулировал закон всемирного тяготения.

Первым решительным шагом в создании математики переменных величин было появление книги Декарта «Геометрия». Основными заслугами Декарта перед математикой являются введение им переменной величины и создание аналитической геометрии. Прежде всего, его интересовала геометрия движения, и, применив к исследованию объектов алгебраические методы, он стал создателем аналитической геометрии.

Аналитическая геометрия начиналась с введения системы координат. В честь создателя прямоугольная система координат, состоящая из двух пересекающихся под прямым углом осей, введенных на них масштабов измерения и начала отсчета - точки пересечения этих осей - называется системой координат на плоскости. В совокупности с третьей осью она является прямоугольной декартовой системой координат в пространстве.

К 60-м годам XVII в. были разработаны многочисленные метолы для вычисления площадей, ограниченных различными кривыми линиями. Нужен был только один толчок, чтобы из разрозненных приемов создать единое интегральное исчисление.

Дифференциальные методы решали основную задачу: зная кривую линию, найти ее касательные. Многие задачи практики приводили к постановке обратной задачи. В процессе решения задачи выяснялось, что к ней применимы интеграционные методы. Так была установлена глубокая связь между дифференциальными и интегральными методами, что создало основу для единого исчисления. Наиболее ранней формой дифференциального и интегрального исчисления является теория флюксий, построенная Ньютоном.

Математики XVIII в. работали одновременно в области естествознания и техники. Лагранж создал основы аналитической механики. Его труд показал, как много результатов можно получить в механике благодаря мощным методам математического анализа. Монументальное произведение Лапласа «Небесная механика» подвело итоги всех предшествовавших работ в этой области.

XVIII в. дал математике мощный аппарат - анализ бесконечно малых. В этот период Эйлер ввел в математику символ f (x) для функции и показал, что функциональная зависимость является основным объектом изучения математического анализа. Разрабатывались способы вычисления частных производных, кратных и криволинейных интегралов, дифференциалов от функций многих переменных.

В XVIII в. из математического анализа выделился ряд важных математических дисциплин: теория дифференциальных уравнений, вариационное исчисление. В это время началась разработка теории вероятностей.

Идейные корни аналитической геометрии лежат в плодородной почве классической древнегреческой математики. Второй по своей эпохальности после гениальных евклидовых «Начал» фундаментальный трактат Апполония из Перги (ок. 260 - 170 гг. до н.э...

Аналитический метод в решении планиметрических задач

Аналитическая геометрия не имеет строго определенного содержания и определяющим для нее является не предмет исследования, а метод...

Исследование функций

Исследование функций

Ключевые понятия Локальный максимум. Локальный минимум. Локальный экстремум. Монотонность функции. 1. Локальные экстремумы функции Пусть задана функция у = f (х) на множестве Х и х0 - внутренняя точка множества Х...

Исследование функций

Рассмотрим некоторые теоремы, которые позволят в дальнейшем проводить исследование поведения функций. Они носят названия основных теорем математического анализа или основных теорем дифференциального исчисления...

Приложение определенного интеграла к решению задач практического содержания

Применение дифференциального и интегрального исчисления к решению физических и геометрических задач в MATLab

История понятия интеграла тесно связана с задачами нахождения квадратур. Задачами о квадратуре той или иной плоской фигуры математики Древней Греции и Рима называли задачи, которые мы сейчас относим к задачам на вычисление площадей...

Применение производной и интеграла для решения уравнений и неравенств

при доказательстве неравенств ТЕОРЕМА 1 (Ролля).Пусть функция f:R удовлетворяет условиям: 1) fC; 2) x(a,b) существует f/(x); 3) f(a)=f(b). Тогда C(a,b): f/(C)=0. Геометрический смысл теоремы Ролля: при выполнении условий 1)-3) теоремы на интервале (a...

Применение производной к решению задач

Слайд 2

Математи́ческийана́лиз - совокупность разделов математики, посвящённых исследованию функций и их обобщений методами дифференциального и интегрального исчислений.

Слайд 3

Метод исчерпывания

Античный метод для исследования площади или объёма криволинейных фигур.

Слайд 4

Метод заключался в следующем: для нахождения площади (или объёма) некоторой фигуры в эту фигуру вписывалась монотонная последовательность других фигур и доказывалось, что их площади (объёмы) неограниченно приближаются к площади (объёму) искомой фигуры.

Слайд 5

В 1696 Лопиталь написал первый учебник, излагавший новый метод в применении к теории плоских кривых. Он назвал его Анализ бесконечно малых, дав тем самым и одно из названий новому разделу математики. Во введении Лопиталь излагает историю возникновения нового анализа, останавливаясь на работах Декарта, Гюйгенса, Лейбница, а также выражает свою благодарность последнему и братьям Бернулли.

Слайд 6

Термин «функция» впервые появляется лишь в 1692 у Лейбница, однако на первые роли его выдвинул именно Эйлер. Изначальная трактовка понятия функции состояла в том, что функция - это выражение для счёта или аналитическое выражение.

Слайд 7

«Теория аналитических функций» («Th.orie des fonctions analytiques», 1797). В «Теории аналитических функций» Лагранж излагает свою знаменитую интерполяционную формулу, которая вдохновила Коши на разработку строгого обоснования анализа.

Слайд 8

В учебниках по математическому анализу можно найти важную лемму Ферма. Так же он сформулировал общий закон дифференцирования дробных степеней.

Пьер де Ферма́ (17 августа 1601 - 12 января 1665) - французский математик, один из создателей аналитической геометрии, математического анализа, теории вероятностей и теории чисел. Ферма практически по современным правилам находил касательные к алгебраическим кривым.

Слайд 9

Рене́ Дека́рт(31 марта 1596 - 11 февраля 1650) - французский математик, философ, физик и физиолог, создатель аналитической геометрии и современной алгебраической символики. В 1637 году вышел в свет главный математический труд Декарта, «Рассуждение о методе» В этой книге излагалась аналитическая геометрия, а в приложениях - многочисленные результаты в алгебре, геометрии, оптике и многое другое. Особо следует отметить переработанную им математическую символику Виета: он ввел общепринятые теперь знаки для переменных и искомых величин (x, y, z, ...) и для буквенных коэфф. (а, b, c, ...)

Слайд 10

Франсуа́ Вие́т(1540 -1603) - французский математик, основоположник символической алгебры. По образованию и основной профессии - юрист. В 1591 ввёл буквенные обозначения не только для неизвестных величин, но и для коэффициентов уравнений Ему принадлежит установление единообразного приёма решения уравнений 2-й, 3-й и 4-й степеней. Среди открытий сам Виет особенно высоко ценил установление зависимости между корнями и коэффициентами уравнений.

Слайд 11

Галиле́оГалиле́й(15 февраля1564, Пиза - 8 января1642) - итальянскийфизик, механик, астроном, философ и математик, оказавший значительное влияние на науку своего времени Cформулировал «парадокс Галилея»: натуральных чисел столько же, сколько их квадратов, хотя большая часть чисел не являются квадратами. Это подтолкнуло в дальнейшем к исследованию природы бесконечных множеств и их классификации; завершился процесс созданием теории множеств.

Слайд 12

«Новая стереометрия винных бочек»

Когда Кеплер покупал вино, он был изумлен тем, как торговец определял вместимость бочки. Продавец брал палкус делениями, и с ее помощью определял расстояние от наливного отверстия до самой дальней точки бочки. Проделав это, он сразу же говорил, сколько литров вина в данной бочке. Так ученый первым обратил внимание на класс задач, исследование которых привело к созданию интегрального исчисления.

Слайд 13

Так, например, для нахождения формулы объема тора Кеплер разбил его меридиональными сечениями на бесконечное количество кружков, толщина которых с внешней стороны была несколько большей, чем с внутренней. Объем такого кружка равен объему цилиндра с основанием, равным сечению тора, и высотой, равной толщине кружка в его средней части. Отсюда сразу получалось, что объем тора равен объему цилиндра, у которого площадь основания равна площади сечения тора, а высота равна длине окружности, которую описывает точка F - центр сечения тора.

Слайд 14

Метод неделимых

Теоретическое обоснование нового метода нахождения площадей и объёмов предложил в 1635 году Кавальери. Он выдвинул следующий тезис: Фигуры относятся друг к другу, как все их линии, взятые по любой регуле [базе параллельных], а тела - как все их плоскости, взятые по любой регуле.

Слайд 15

Например вычислим площадь круга. Формула для длины окружности: считается известной. Разобьём круг (слева на рис. 1) на бесконечно малые кольца. Рассмотрим также треугольник (справа на рис. 1) с длиной основания L и высотой R, который тоже разобъём сечениями параллельно основанию. Каждому кольцу радиуса R и длины можно сопоставить одно из сечений треугольника той же длины. Тогда, по принципу Кавальери, их площади равны. А площадь треугольника найти несложно: .

Слайд 16

Над презентацией работали:

Жарков Александр Киселева Марина Рясов Михаил Чередниченко Алина

Посмотреть все слайды

История математического анализа

XVIII век часто называют веком научной революции, определившей развитие общества вплоть до наших дней. Базировалась эта революция на замечательных математических открытиях, совершённых в XVII веке и основанных в последующее столетие. «Нет ни одного объекта в материальном мире и ни одной мысли в области духа, на которых не отразилось бы влияние научной революции XVIII века. Ни один из элементов современной цивилизации не мог бы существовать без принципов механики, без аналитической геометрии и дифференциального исчисления. Нет ни одной отрасли в деятельности человека, которая не испытала бы на себе сильного влияния гения Галилея, Декарта, Ньютона и Лейбница». Эти слова французского математика Э. Бореля (1871 – 1956), произнесенные им в 1914 году, остаются актуальными и в наше время. В развитие математического анализа внесли свой вклад многие великие ученые: И.Кеплер (1571 -1630), Р.Декарт (1596 -1650), П.Ферма (1601 -1665), Б.Паскаль (1623 -1662), Х.Гюйгенс (1629 -1695), И.Барроу (1630 -1677), братья Я.Бернулли (1654 -1705) и И.Бернулли (1667 -1748) и другие.

Новшество этих знаменитостей в понимании и описании окружающего нас мира:

    движение, изменение и вариативность (вошла жизнь с её динамикой и развитием);

    статистические слепки и одномоментные фотографии её состояний.

Математические открытия XVII –XVII веков были определены с помощью таких понятий, как переменная, и функция, координаты, график, вектор, производная, интеграл, ряд и дифференциальное уравнение.

Паскаль, Декарт и Лейбниц были не столько математики, сколько философами. Именно общечеловеческий и философский смысл их математических открытий составляет сейчас главную ценность и является необходимым элементом общей культуры.

Как серьёзную философию, так и серьезную математику нельзя понять, не овладев соответствующим языком. Ньютон в письме к Лейбницу о решении дифференциальных уравнений излагает свой метод следующим образом: 5accdae10effh 12i…rrrssssttuu.

Средоточием всех наук считается философия, так как именно она включала в себя первые ростки литературы, астрономии, литературы, естествознания, математики и прочих направлений. С течением времени каждая область развивалась самостоятельно, математика не стала исключением. Первым «намеком» на анализ считается теория разложения на бесконечно малые величины, к которой пытались подступиться многие умы, однако она носила туманный характер и не имела под собой базы. Это связано с привязанностью к старой школе науки, которая была строга в своих формулировках. Исаак Ньютон был очень близок к тому, чтобы сформировать основы, но опоздал. В итоге своему появлению как обособленной системе математический анализ обязан философу Готфриду Лейбницу. Именно он в работах представил научному миру такие понятия, как минимум и максимум, точки перегиба и выпуклости графика функции, сформулировал основы дифференциального исчисления. С этого момента математику официально разделяют на элементарную и высшую.

Математический анализ. Наши дни

Любая специальность, будь она технической или гуманитарной, включает в курс обучения анализ. Глубина изучения разнится, но суть остается неизменной. Несмотря на всю «абстрактность», он является одним из столпов, на котором держится естествознание в современном его понимании. С его помощью получили развитие физика и экономика, он способен описать и спрогнозировать деятельность фондовой биржи, помочь в построении оптимального портфеля акций. Введение в математический анализ базируется на элементарных понятиях:

  • множества;
  • основные операции над множествами;
  • свойства операций над множествами;
  • функции (иначе - отображения);
  • типы функций;
  • последовательности;
  • числовые прямые;
  • предел последовательности;
  • свойства пределов;
  • непрерывность функции.

Стоит выделить отдельно такие понятия, как множество, точка, прямая, плоскость. Все они не имеют определений, так как являются базовыми понятиями, на которых строится вся математика. Все, что можно сделать в процессе работы - это пояснить, что именно они означают в отдельно взятых случаях.

Предел как продолжение

К основам математического анализа относится предел. На практике он представляет собой величину, к которой стремится последовательность или функция, подходит сколь угодно близко, но не достигает ее. Обозначается он как lim, рассмотрим частный случай предела функции: lim (x-1)= 0 при х→1. Из этого простейшего примера видно, что при х→1 вся функция стремится к 0, так как если подставить предел в саму функцию, то получим (1-1)=0. Подробнее, от элементарных до усложненных частных случаев, информация изложена в своеобразной «Библии» анализа - работах Фихтенгольца. Там рассматривается в разрезе математический анализ, пределы, их вывод и дальнейшее применение. Например, вывод числа e (константа Эйлера) был бы невозможен без теории пределов. Несмотря на динамическую абстрактность теории, пределы активно используются на практике все в той же экономике и социологии. Например, без них не обойтись при начислении процентов по банковскому вкладу.

English: Wikipedia is making the site more secure. You are using an old web browser that will not be able to connect to Wikipedia in the future. Please update your device or contact your IT administrator.

中文: 维基百科正在使网站更加安全。您正在使用旧的浏览器,这在将来无法连接维基百科。请更新您的设备或联络您的IT管理员。以下提供更长,更具技术性的更新(仅英语)。

Español: Wikipedia está haciendo el sitio más seguro. Usted está utilizando un navegador web viejo que no será capaz de conectarse a Wikipedia en el futuro. Actualice su dispositivo o contacte a su administrador informático. Más abajo hay una actualización más larga y más técnica en inglés.

ﺎﻠﻋﺮﺒﻳﺓ: ويكيبيديا تسعى لتأمين الموقع أكثر من ذي قبل. أنت تستخدم متصفح وب قديم لن يتمكن من الاتصال بموقع ويكيبيديا في المستقبل. يرجى تحديث جهازك أو الاتصال بغداري تقنية المعلومات الخاص بك. يوجد تحديث فني أطول ومغرق في التقنية باللغة الإنجليزية تاليا.

Français: Wikipédia va bientôt augmenter la sécurité de son site. Vous utilisez actuellement un navigateur web ancien, qui ne pourra plus se connecter à Wikipédia lorsque ce sera fait. Merci de mettre à jour votre appareil ou de contacter votre administrateur informatique à cette fin. Des informations supplémentaires plus techniques et en anglais sont disponibles ci-dessous.

日本語: ウィキペディアではサイトのセキュリティを高めています。ご利用のブラウザはバージョンが古く、今後、ウィキペディアに接続できなくなる可能性があります。デバイスを更新するか、IT管理者にご相談ください。技術面の詳しい更新情報は以下に英語で提供しています。

Deutsch: Wikipedia erhöht die Sicherheit der Webseite. Du benutzt einen alten Webbrowser, der in Zukunft nicht mehr auf Wikipedia zugreifen können wird. Bitte aktualisiere dein Gerät oder sprich deinen IT-Administrator an. Ausführlichere (und technisch detailliertere) Hinweise findest Du unten in englischer Sprache.

Italiano: Wikipedia sta rendendo il sito più sicuro. Stai usando un browser web che non sarà in grado di connettersi a Wikipedia in futuro. Per favore, aggiorna il tuo dispositivo o contatta il tuo amministratore informatico. Più in basso è disponibile un aggiornamento più dettagliato e tecnico in inglese.

Magyar: Biztonságosabb lesz a Wikipédia. A böngésző, amit használsz, nem lesz képes kapcsolódni a jövőben. Használj modernebb szoftvert vagy jelezd a problémát a rendszergazdádnak. Alább olvashatod a részletesebb magyarázatot (angolul).

Svenska: Wikipedia gör sidan mer säker. Du använder en äldre webbläsare som inte kommer att kunna läsa Wikipedia i framtiden. Uppdatera din enhet eller kontakta din IT-administratör. Det finns en längre och mer teknisk förklaring på engelska längre ned.

हिन्दी: विकिपीडिया साइट को और अधिक सुरक्षित बना रहा है। आप एक पुराने वेब ब्राउज़र का उपयोग कर रहे हैं जो भविष्य में विकिपीडिया से कनेक्ट नहीं हो पाएगा। कृपया अपना डिवाइस अपडेट करें या अपने आईटी व्यवस्थापक से संपर्क करें। नीचे अंग्रेजी में एक लंबा और अधिक तकनीकी अद्यतन है।

We are removing support for insecure TLS protocol versions, specifically TLSv1.0 and TLSv1.1, which your browser software relies on to connect to our sites. This is usually caused by outdated browsers, or older Android smartphones. Or it could be interference from corporate or personal "Web Security" software, which actually downgrades connection security.

You must upgrade your web browser or otherwise fix this issue to access our sites. This message will remain until Jan 1, 2020. After that date, your browser will not be able to establish a connection to our servers.



Статьи по теме