Пожарные резервуары: наземный и подземный, требования и нормы. Расчет напорно-регулирующих емкостей Расчет резервуаров чистой воды

Полностью исключить возможность возникновения пожара невозможно, поэтому владельцы предприятий и организаций, владельцы частных зданий и сооружений, а также арендаторы должны позаботиться о правильном выборе и размещении пожарных резервуаров.

Особые условия размещения емкостей

Для тушения пожара используются источники воды - природные или искусственные водоемы. Если таких нет рядом с предприятием, необходим пожарный резервуар, емкость для хранения воды на случай необходимости пожаротушения.

Для размещения резервуара специалисты тщательно подбирают место и тип емкости, отвечающий потребностям предприятия. Для расчета учитываются такие факторы, как скорость заполнения емкости водой, подачи воды в пожарный кран, возможность замерзания, испарения. При угрозе замерзания воды емкость углубляют глубоко в земле, или размещают в помещении с подогревом, а при испарении обеспечивают дополнительный приток воды. В более мягком климате возможно расположение на поверхности земли.

Разновидности емкости по используемому материалу

  • Металлические - изготовлены из толстой листовой стали путем сваривания, с нанесенным антикоррозийным покрытием. Их делают либо горизонтальными цилиндрами, либо вертикальными (объем от 100 до 5,0 тыс. куб. м.). Иногда с этой целью используют бывшие в употреблении железнодорожные цистерны емкостью 20 - 100 куб.м., соединенные снизу трубопроводом;
  • Монолитные железобетонные или собранные из панелей с монолитным угловым и донным соединением - резервуары объемом свыше 5,0 тыс. куб. м. содержат проемы для забора воды. Объем емкости зависит от проектных расчетов защищаемого объекта;
  • Пластиковые емкости - активно используются в последнее время. Отличаются легким весом. Вода сохраняет свои качества. Эксперты высказывают мнения о возможной эксплуатации до 50 лет. Объем резервуаров достигает 200,0 тыс. куб. м.

Классификация по месторасположению и назначению

Существуют пожарные емкости как стационарные, описанные выше, так и переносные транспортным средством (автомобилем, вертолетом). Мобильные резервуары имеют легкую конструкцию, быстро подключаются и заполняются водой, надежны в эксплуатации.

Пожарные резервуары должны отвечать регламентированным параметрам и соответствовать определенным параметрам. Объема воды, хранящейся в резервуаре, должно хватить на тушение пожаров из внешних гидрантов, внутренних кранов.

В зависимости от назначения объем емкости подразделяют на:

  • аварийные;
  • пожарные;
  • дополнительные;
  • регулирующие.

Аварийный объем предназначен на случай непредвиденной ситуации, связанной с поломкой водопровода, для восполнения запаса воды. Он обеспечивает необходимый приток, поступаемый из сети на время устранения поломки водопровода.

Пожарный рассчитан на использование воды во время тушения пожара и сопутствующие производственные нужды, связанные с укрощением стихии.

Дополнительный используется в случае, если объект расположен вне населенного пункта и для тушения необходимо более 40 литров воды в сек.

Регулирующий рассчитывается по специальной формуле с учетом графика заполнения и добавления воды, если подача ее происходит без перебоя.

Конструкционные особенности емкости

Пожарная емкость состоит из следующих элементов:

  • подводящих и отводящих труб;
  • вентиляции;
  • переливного устройства;
  • спускной трубы;
  • лестницы;
  • люков.

Возможна установка дополнительных элементов: датчиков, предотвращающих перелив, устройств для контроля уровня воды, световых люков, промывочных трубопроводов.

Подводящая труба на своем конце имеет диффузор, расположенный выше уровня воды на один метр. В отводящей трубе на днище установлен конфузор с решеткой. Разность между максимальной подачей и минимальным отбором воды представляет характеристику переливного устройства. Днище резервуара имеет небольшой уклон в сторону сливного трубопровода, подключенного к канализации или канаве.

Расположение люков устраивают таким образом, чтобы получить свободный доступ к подводящей и отводящей трубам. Если предусмотрено хранение питьевой воды, люки должны надежно запираться и иметь возможность опломбирования. Резервуар оснащается вентиляцией, а в случае с питьевой водой - фильтрами для защиты от загрязненного воздуха.

Расчет объема емкости

Правила пожарной безопасности требуют, чтобы на предприятии находилось не менее двух резервуаров для тушения пожара, которые должны располагаться независимо друг от друга и наполняться водой не менее, чем наполовину объема.

Расчет пожарной емкости совершается по специальной формуле. Для этого определяют количество воды, необходимое:

  • для тушения пожара длительностью три часа,
  • на хозяйственные нужды, связанные с пожаротушением,
  • на поливку рядом стоящих объектов во избежание их возгорания.

Это определение исходного объема. Уменьшающие его значения складываются из скорости подачи воды, возможности пополнения запаса во время пожара.

Радиус обслуживания составляет:

  • 100 - 150 м при оборудовании резервуара пожарными помпами;
  • 200 м - при наличии станций пожаротушений и насосов;
  • До 10 м - 1-я и 2-я категории огнестойкости;
  • 30 м - 3-я и 5-я категории.

Наружное водообеспечение должно присутствовать на каждом промышленном и сельскохозяйственном объекте. Для сельской местности показатель несколько отличается и составляет 5 л/с, а в городских условиях при обслуживании высотных зданий, например, для 12-этажного дома, расход составляет 35 л/с.

Расположение резервуаров

Пожарные резервуары должны располагаться таким образом, чтобы обеспечить во время возгорания объекта удобный доступ пожарным машинам и силам МЧС. Подъезд к ним должен быть открыт в любое время суток. Необходимо рассчитать вместимость и расположение резервуаров таким образом, чтобы они обеспечивали струю воды не мене 4 метров над ними.

Грамотно рассчитанные объемы емкости служат надежной гарантией успешного тушения пожара и предотвращения возгорания соседних зданий и местности.

Применяемые на объектах водоснабжения резервуары предназначены для аккумуляции и хранения воды в системах хозяйственно-питьевого и производственного водоснабжения. Производительность водоприемных и очистных сооружений и насосных станций I подъема больше минимальной и меньше максимальной производительности насосных станций II подъема. В часы минимальной производительности насосных станций II подъема (в часы минимального водопотребления) излишек воды, поступающий от очистных сооружений, накапливается в резервуарах чистой воды; в часы максимальной производительности насосных станций II подъема (в часы максимального водопотребления) накопившийся излишек расходуется потребителями. Таким образом, резервуары чистой воды являются регулирующими емкостями. Кроме того, в резервуарах чистой воды хранят запас воды для пожаротушения и собственных нужд очистных станций.

Расчет резервуара чистой воды

Определить объем РЧВ.

WРЧВ = WРЧВрег + WРЧВн. з., (5. 1)

где WРЧВрег -регулирующий объем, м3;

WРЧВн. з -неприкосновенный объем, м3.

Определить регулирующий объем.

При определении регулирующего объема, принимаем допущение, что в любой момент времени НС-I и НС-II работают с одинаковой подачей воды.

WРЧВрег% = Sа = Sв

Насосные станции I подъема -4, 17%

  • 19-15 ч -3. 1%
  • 15-19 ч -9. 5%

WРЧВрег% = 4 ? 5. 33 = 21. 32%

WРЧВрег% ? Qсут. макс. 21. 32 ? 1458

WРЧВрег = = = 310 м3

Определить неприкосновенный объем.

Пожарный запас воды в резервуарах принимается согласно п. 12. 3 .

WРЧВн. з. = Wпож + Wх. п. + Wпроизв., (5. 2)

где Wпож -пожарный запас, м3;

Wх. п. -хозяйственно-питьевой запас, м3;

Wпроизв. -производственный запас, м3.

Если расчетное время тушения пожара 3 часа и Кчас. мах = 2. 1, то три часа наибольшего расхода воды -с1100 до 1400 (столбец 2 приложения 10). В это время на хозяйственно-питьевые нужды населенного пункта расходуется 8. 5 + 8. 5 + 6 == 23% от суточного водопотребления.

Qпрсек? tтуш? 3600 10 ? 3 ? 3600

Wпроизв. = = = 108 м3

WРЧВн. з. = Wпож + Wх. п. + Wпроизв. = 270 + 136. 6 + 108 = 514. 6 м3

WРЧВ = WРВЧрег + WРВЧн. з., = 310 + 514. 6 = 824. 6 м3

Определить общее количество РЧВ и объем одного из них.

WРЧВ? WРЧВн. з. ? 1/n, (5. 6)

где WРЧВн. з. -объем неприкосновенного запаса, м3;

n -количество резервуаров.

Количество резервуаров принимаем 2 (1, п. 9. 21).

WРЧВ? WРЧВн. з. ? 1/n

  • 3200 ? 824. 6 ? 1/2
  • 3200 ? 412. 31

По приложению 9 выбираем два резервуара РЕ-100М-5

Вывод: Количество резервуаров согласно п. 9. 21 СНиП 2. 04. 02-84 «Водоснабжение. Наружные сети и сооружения» принято два. С учетом полученного неприкосновенного запаса воды по приложению 9 выбраны резервуары марки РЕ-100М-7 емкостью 700 м3. Ширина выбранных резервуаров-12 м, длина -18 м, высота - 3. 6 м.

Основным материалом резервуаров является железобетон. В силу трудностей, связанных с устройством сборного покрытия прямоугольные резервуары проектируются с монолитными или сборно-монолитными днищами и сборными остальными конструкциями.

Резервуары изготовляют из железобетона, кирпича, камня и дерева (временные). При малых объемах (до 2000 м3) запасные резервуары целесообразно строить круглой формы, при больших объемах - прямоугольной формы. Покрытие над резервуаром может быть сферическое (купольное) или плоское. Сверху резервуар покрывают слоем земли (для утепления). В последние годы для строительства резервуаров используют сборный и предварительно-напряженный железобетон.

Стены и дно резервуара должны быть водонепроницаемыми.

Запасные резервуары чаще всего устраивают подземными или полуподземными и реже наземными. Запасной резервуар оборудуют подающим трубопроводом, переливной и грязевой трубами, всасывающим трубопроводом, лазом и вентиляционной трубой.

Если имеется несколько резервуаров, то все они соединяются трубопроводами с задвижками между собой.

Для забора воды из резервуаров пожарными автонасосами предусматривают люки (в покрытии резервуаров) и колодцы, в которых устанавливают стояки с гайкой для присоединения всасывающих линий насосов. Устанавливать в колодце вместо стояков пожарные гидранты не допускается, так как в гидранте и пожарной колонке при заборе воды возникают потери напора на много больше, чем напор, создаваемый за счет уровня воды в резервуаре.

Для предупреждения возможности использования неприкосновенного пожарного запаса воды на другие нужды принимаются специальные меры. На насосной станции II подъема неприкосновенный запас воды сохраняется с помощью различного расположения всасывающих линий насосов. Хозяйственно-питьевые насосы забирают воду по трубопроводу с уровня неприкосновенного запаса воды, пожарные насосы снизу резервуара из специального приямка.

Для того чтобы нижние слои воды резервуаров не застаивались, на всасывающую линию хозяйственно-питьевых насосов надевают кожух. Вода поступает под кожух, а затем во всасывающую линию хозяйственно-питьевых насосов.

Если на насосной станции II подъема нет специальных пожарных насосов, а имеются только хозяйственно-питьевые (производственные) насосы, которые обеспечивают также и пожарные нужды, то сохранение неприкосновенного запаса воды производится с помощью поплавковой электросигнализации. С уменьшением уровня воды в запасном резервуаре поплавок опускается, контактная система поплавкового выключателя замкнет электроцепь и в насосной станции II подъема будет дан звуковой или световой сигнал.

Для сохранения неприкосновенного запаса воды в запасных резервуарах используют поплавковое реле, механически воздействующее на ртутный прерыватель электрической цепи управления электродвигателем насоса. При изменении уровня жидкости поплавок, перемещаясь с помощью тяги, меняет положение ртутного прерывателя. При понижении уровня жидкости поплавок устанавливает ртутный

прерыватель в горизонтальном положении. В этом случае контакты прерывателя замыкаются переливающейся ртутью и ток поступает в цепь катушки магнитного пускателя. Последний включает электродвигатель насоса, подающего воду в резервуар. При наполнении резервуара поплавок поднимается и выводит ртутный прерыватель из горизонтального положения. Контакты прерывателя, размыкаясь, выключают магнитный пускатель, который в свою очередь отключает двигатель насоса, прекращая наполнение резервуара.

Таблица 5. 1

Определение регулирующего объема бака водонапорной башни при ступенчатом режиме (К=2. 1)

Часы суток

Расход воды поселком в%

Подача НС-2 (расход из РЧВ)

Поступление в ВБ в%

Расход из ВБ в%

Остаток в ВБ в%

Qсут. макс. ? А 1458 ? 1. 7

Wрег. = = = 24. 8 м3

Рассмотрим неравномерный (ступенчатый) режим работы НС-2. Результаты расчета сводим в таблицу (таблица 5. 2).

Определим регулирующий объем бака водонапорной башни.

Qсут. макс. ? А 1458 ? 1. 7

Расчет показывает, что использование даже простейшего графика ступенчатой работы насосов позволяет значительно уменьшить регулирующий объем бака.

Q1 нар. пож. ? tтуш. ? 60 15 ? 10 ? 60

Wпож. нар. = = = 9 м3

Q1 вн. пож. ? tтуш. ? 60

Wпож. вн. =, (5. 10)

где Q1 вн. пож. -наибольший расход воды на один внутренний пожар, л/с;

Wпож. вн. = 10 * 0. 6 = 6 м3

Qхп. сек. ? tтуш. ? 60

Wх. п. =, (5. 11)

где Qхп. сек. -секундный расход воды на хозяйственно-питьевые нужды, л/с;

tтуш. -расчетное время тушение пожара, мин.

Qхп. сек. ? tтуш. ? 60 14. 4 ? 10 ? 60

Wх. п. = = = 8. 7 м3

Qпр? tтуш. ? 60

Wпр. =, (5. 11)

где Qпр -секундный расход воды на производственном предприятии, л/с;

tтуш. -расчетное время тушение пожара, мин.

Qпр. сек. ? tтуш. ? 60 10 ? 10 ? 60

Wпр. = = = 6 м3

Wн. з. = Wпож. нар. + Wпож. внутр. + Wх. п. + Wпр = 9 + 6 + 8. 7 + 6 = 29. 7 м3

Wбака = Wрег. + Wн. з. = 24. 8 + 29. 7 = 54. 4 м3

Выбрать типовой бак.

Используя приложение 11 выбираем типовую железобетонную башню с железобетонным баком емкостью 100 м3.

Определить диаметр и высоту бака.

Wбака = р /4 ? Д2бака? Нбака, (5. 12)

Нбака / Дбака = 0, 5…1, 0, (5. 13)

где Wбака -емкость бака водонапорной башни, м3;

Нбака -высота бака, м;

Дбака -диаметр бака, м.

Дбака = Нбака / 0, 5

Wбака = р /4 ? (Нбака / 0, 5) 2 ? Нбака

Нбака = 3v Wбака / р = 3v 100 / 3, 14 = 5. 03 м

Дбака = 5. 03м

Определить высоту башни.

Нбашни = 1, 05 ? hсети + Zд. т. - Zбашни + Нсв, (5. 14)

где hсети -средние потери напора в водопроводной сети при работе ее в обычное время;

Нсв -свободный напор в диктующей точке при заданной застройке, м;

Zд. т. -геодезическая отметка диктующей точки, м;

Zбашни -геодезическая отметка в месте установки водонапорной башни, м;

1, 05 -коэффициент, учитывающий потери напора.

Минимальный свободный напор в диктующей точке (1, п. 2. 26) равен:

Нсв = 10 + 4 (n - 1), (5. 15)

где n -количество этажей.

Нсв = 10 + 4 (n - 1) = 10 + 4 (2 - 1) = 14 м

Нбашни = 1, 05 ? hсети + Zд. т. - Zбашни + Нсв = 1, 05 ? 5, 22 + 75 - 65 + 14 = 24, 5 м

Сделать выводы.

Полученные расчетные высоты башни и бака не обеспечивают выполнение условия: свободный напор в наружной сети хозяйственно-питьевого водопровода у потребителей не должен превышать 60 м (1, п. 2. 28)

Нбака + Нбашни < Нмах доп.

5, 03 м + 24, 5 м = 29, 5 < 60 м

При напорах в сети более 60 м следует предусматривать установку регуляторов давления, местных насосных установок для повышения напора для зданий, расположенных в диктующей точке или возвышенных местах.

Высоту башни до дна бака выбираем типовую максимально допустимую равную 25 м. И применяем систему местных насосных установок для повышения напора для зданий, расположенных в диктующей точке.

Выбранная водонапорная башня соответствует основным параметрам типовых башен с емкостью водонапорного бака 100 м3 и с высотой ствола башни равной 25 м. Высота бака составляет 5. 03 м и диаметр - 5. 03 м.

Как правило водонапорную башню располагают на возвышенном месте, на кровле башни монтируют молниеотвод в соответствии с РД 34. 21. 122-87.

Водонапорная башня изготовлена с железобетонным стволом и с железобетонным баком.

Исходя из заданных условий, и принятых конструктивных решений требуется отключения водонапорной башни во время пожара. Отключение водонапорной башни при включении пожарных насосов происходит с помощью обратного клапана, установленного на разводяще-подающем трубопроводе.

где L B - требуемая производительность вентилятора, м /ч;

Н - давление, создаваемое вентилятором, Па (численно равно Н с); n в - КПД вентилятора;

n п - КПД передачи (колесо вентилятора на валу электродвигателя - n п = 0,95; плоскоременная передача - n п = 0,9).

Выбирают тип электродвигателя: для общеобменной и местной вытяж­ной систем вентиляции - взрывобезопасного или нормального исполнения в зависимости от удаляемых загрязнений; для приточной системы вентиляции - нормального исполнения.

Установленную мощность электродвигателя для вытяжной системы вентиляций рассчитываем по формуле:

где К 3.М - коэффициент запаса мощности (К зм = 1,15).

Примем для выбранного вентилятора электродвигатель марки 4А112М4УЗ нормального исполнения с частотой вращения 1445 мин -1 и мощностью 5,5 кВт (см. табл. 3.129).

3.4.6 Расчет пожарного запаса воды

Требуемый запас воды на наружное пожаротушение, м 3 , определяется по формуле:

где g H - удельный расход воды на наружное пожаротушение, л/с (принимает­ся по данным таблицы 3.130);

Т п - расчетное время тушения одного пожара, ч (принимают Т п = 3 ч);

n п - число одновременно возможных пожаров (при площади предприятия

менее 1,5 км 2 n п = 1, при площади 1,5 км 2 и более n п = 2).

Таблица 3.130 - Удельный расход воды на пожаротушение

Такая вместимость пожарного резервуара должна обеспечить необхо­димый запас воды для наружного и внутреннего пожаротушения.

  1. Экологическая безопасность

В данном разделе РПЗ приводят результаты анализа объектов предпри­ятия как источников загрязнения окружающей среды (виды загрязнений, их свойства, количественные и качественные характеристики).

где g B - расход воды на одну струю для производственного здания высотой до 50 м (принимается равным g B = 2,5 л/с); m - число струй (m = 2).

Тогда полная вместимость пожарного резервуара составит:

где g н - удельный расход воды на наружное пожаротушение для зданий объ- емом 5...20 тыс. м с категорией производства Д по опасности пожара и взрыва (по данным таблицы 3.130 принимается равным g н = 15 л/с); n п - число одновременно возможных пожаров при площади предприятия ме- нее 1,5 км (n п =1).

Объем воды, необходимый для внутреннего пожаротушения:

где Q T - регулярный запас воды для хозяйственно-технических нужд, м 3 .

Пример 3.12. Определим вместимость пожарного резервуара для ту­шения отдельно стоящего коровника на 400 голов, объем которого составля­ет 11214 м 3 . Здание имеет III степень огнестойкости. Технологический запас воды Q T = 20 м 3 .

Решение. Объем воды, необходимый для наружного пожаротушения:

где g B и m - соответственно расход воды на одну струю и число струй (для производственных зданий и гаражей высотой до 50 м g = 2,5 л/с и m = 2; для производственных и вспомогательных зданий промышленных предприятий высотой более 50 м g = 5 л/с и m = 8).

Полная вместимость пожарного резервуара, м 3 , определяется по фор­муле:

Объем воды, необходимый для внутреннего пожаротушения, м 3 , рас­считывают в зависимости от производительности (расхода) струи и числа одновременно действующих струй:

На основании результатов анализа разрабатывают мероприятия по уменьшению загрязнения окружающей среды.

Во второй части этого раздела необходимо провести расчеты выбросов загрязняющих веществ и платы за загрязнение окружающей среды.

3.5.1 Расчет выбросов загрязняющих веществ на производственных участках предприятия

При очистке деталей и агрегатов валовый выброс загрязняющего веще­ства определяют по формуле:

Таблица 3.131 - Удельные выделения загрязняющих веществ при очистке деталей и агрегатов

Максимально разовый выброс определяется по формуле, г/с:

При расчете выбросов загрязняющих веществ от шиноремонтных работ используются следующие исходные данные:

    удельные выделения загрязняющих веществ при ремонте резинотех­нических изделий (принимаются согласно данным таблиц 3.132 и 3.133);

    количество расходуемых за год материалов (клей, бензин, резина для ремонта);

    время работы шероховальных станков в день.

Таблица 3.132 - Удельное выделение пыли при шероховке

где q i - удельный выброс загрязняющего вещества, г/с*м 2 (табл. 3.131); F - площадь зеркала моечной ванны, м 2 ; t - время работы моечной установки в день, ч; п - число дней работы моечной установки в год.

Таблица 3.133 - Удельные выделения загрязняющих веществ в процессе ремонта резинотехнических изделий

где t - время вулканизации на одном станке в день, ч; п - количество дней работы станка в год.

Расчет валового выброса загрязняющих веществ при всех видах элек­тросварочных и наплавочных работ производят по формуле, т/год:

где В" - количество израсходованного бензина в день, кг; t - время, затрачиваемое на приготовление, нанесение и сушку клея в день, ч.

Максимально разовый выброс углерода оксида и ангидрида сернистого определяют по формуле, г/с:

где q B i - удельное выделение загрязняющего вещества, г/кг ремонтных мате­риалов, клея в процессе его нанесения с последующей сушкой и вулканиза­цией (см. табл. 3.133);

В - количество израсходованных ремонтных материалов в год, кг.

Максимально разовый выброс бензина определяют по формуле, г/с:

где q n - удельное выделение пыли при работе единицы оборудования, г/с (см. табл. 3.132);

п - число дней работы шероховального станка в год; t - среднее «чистое» время работы шероховального станка в день, ч.

Валовые выбросы бензина, углерода оксида и ангидрида сернистого определяют по формуле, т/год:

Валовые выделения загрязняющих веществ рассчитывают по нижепри­веденным формулам.

Валовые выделения пыли, т/год:

где g c i - удельный показатель выделяемого загрязняющего вещества г/кг, рас­ходуемых сварочных материалов (принимается по данным таблицы 3.134);

В - масса расходуемого за год сварочного материала, кг.

Таблица 3.134 - Удельные выделения вредных веществ при сварке (наплавке) металлов (г на 1 кг электродов)

где В - расход дизельного топлива за год на проведение испытаний, кг; g i - удельный выброс загрязняющего вещества, г/кг (табл. 3.135).

Таблица 3.135 - Удельные показатели выделения загрязняющих веществ при испытании и регулировке дизельной топливной аппаратуры

где b - максимальное количество сварочных материалов, расходуемых в те­чение рабочего дня, кг;

t - «чистое» время, затрачиваемое на сварку в течение рабочего дня, ч.

При испытании дизельной топливной аппаратуры валовый выброс за­грязняющего вещества определяют по формуле, т/год:

Максимально разовый выброс определяют по формуле, г/с:

где m 1 - количество растворителей, израсходованных за год, кг;

f 2 - количество летучей части краски в % (см. табл. 3.137);

f pip - количество различных летучих компонентов в растворителях в %

(см. табл. 3.137);

f pik - количество различных летучих компонентов, входящих в состав краски (грунтовки, шпатлевки), в % (см. табл. 3.137).

Таблица 3.136 - Выделение загрязняющих веществ при окраске и сушке, %

где m - количество израсходованной краски за год, кг;

8 К - доля краски, потерянной в виде аэрозоля при различных способах окра­ски, % (принимается по данным таблицы 3.136);

f 1 - количество сухой части краски, в % (принимается по таблице 3.137).

Валовый выброс летучих компонентов в растворителе и краске, если окраска и сушка проводится в одном помещении, рассчитывают по формуле, т/год:

где t - «чистое время» испытания и проверки в день, ч;

В" - расход дизельного топлива за день, кг.

Основным источником выделения вредных веществ при окраске машин и деталей являются аэрозоли красок и пары растворителей. Состав и количе­ство выделяемых загрязняющих веществ зависит от количества и марок при­меняемых лакокрасочных материалов и растворителей, методов окраски и эффективности работы очистных устройств. Расчет выбросов производится раздельно для каждой марки применяемых лакокрасочных материалов и рас­творителей.

Валовый выброс аэрозоля для каждого вида лакокрасочного материала определяют по формуле, т/год:

Максимально разовый выброс определяют по формуле, г/с:

Таблица 3.137 - Состав эмалей и грунтовок, %

Валовый выброс загрязняющего вещества, содержащегося в данном растворителе (краске), следует считать по формуле (3.340) для каждого ве­щества отдельно.

При проведении окраски и сушки в разных помещениях валовые вы­бросы подчитывают по нижеприведенным зависимостям.

Для окрасочного помещения, т/год:

Для помещения сушки, т/год:

Общую сумму валового выброса однотипных компонентов определяют по формуле, т/год:

Максимально разовое количество загрязняющих веществ, выбрасывае­мых в атмосферу, определяется в г за секунду в наиболее напряженное время работы, когда расходуется наибольшее количество окрасочных материалов (например, в дни подготовки к годовому осмотру). Такой расчет производят для каждого компонента отдельно по формуле, г/с:

где t - число рабочих часов в день в наиболее напряженный месяц, ч; п - число дней работы участка в этом месяце;

Р"- валовый выброс аэрозоля краски и отдельных компонентов растворите­лей за месяц, выделившихся при окраске и сушке, рассчитанный по форму­лам (3.339)...(3.343).

Обкатка и испытание двигателей после ремонта производится на спе­циальных стендах на двух режимах работы - без нагрузки на холостом ходу и под нагрузкой. Расчет ведется для токсичных веществ, выделяемых при ра­боте автомобильных двигателей: оксид углерода - СО, оксиды азота - NO x , углероды - СН, соединения серы - S0 2 , сажа - С (только для дизелей), со­единения свинца - РЬ (при применении этилированного бензина).

Обкатка двигателей проводится как без нагрузки (холостой ход), так и под нагрузкой. На режиме холостого хода выброс загрязняющих веществ оп­ределяется в зависимости от рабочего объема испытываемого двигателя. При обкатке под нагрузкой выброс загрязняющих веществ зависит от средней мощности, развиваемой двигателем при обкатке.

Валовый выброс i-ro загрязняющего вещества М i определяют по фор­муле, т/год:

где M ixx - валовый выброс i-ro загрязняющего вещества при обкатке на холо­стом ходу, т/год;

M iH - валовый выброс i-ro загрязняющего вещества при обкатке под нагруз­кой, т/год.

Валовый выброс i-ro загрязняющего вещества при обкатке на холостом ходу определяют по формуле, т/год:

где P ixxn - выброс i-ro загрязняющего вещества при обкатке двигателя n-й модели на холостом ходу, г/с;

t xxn ~ время обкатки двигателя n-й модели на холостом ходу, мин; n п - количество обкатанных двигателей n-й модели в год.

где q ixx Б, q i ххД - удельный выброс i-ro загрязняющего вещества бензиновым и дизельным двигателем n-й модели на единицу рабочего объема, г/л.с;

V hn - рабочий объем двигателя n-й модели, л.

Валовый выброс i-ro загрязняющего вещества при обкатке двигателя под нагрузкой определяют по формуле, т/год:

где Р i НП - выброс i-гo загрязняющего вещества при обкатке двигателя n-й мо­дели под нагрузкой, г/с;

где q iHB , q i Д - удельный выброс i-гo загрязняющего вещества бензиновым или дизельным двигателем на единицу мощности, г/л.с*с;

N cp Б, М срД ~ средняя мощность, развиваемая при обкатке наиболее мощного бензинового и дизельного двигателя, л.с.;

АБ, АД - количество одновременно работающих испытательных стендов для обкатки бензиновых и дизельных двигателей.

Таблица 3.138 - Удельные выделения загрязняющих веществ при обкатке двигателей после ремонта на стендах

Если на предприятии имеется только один стенд, на котором обкаты­вают бензиновые и дизельные двигатели, то в качестве максимально разовых выбросов G i принимаются значения для двигателей, имеющих наибольшие выбросы по i-му компоненту.

где q i НБ, q i НД - удельный выброс i-гo загрязняющего вещества бензиновым или дизельным двигателем на единицу мощности, г/л.с;

N cpn - средняя мощность, развиваемая при обкатке под нагрузкой двигателем n-й модели, л.с.

Значения q ixx Б, q ixx Д, q iH Б и q iH Д приведены в таблице 3.138. Значения V hn , t НП, N cp п принимаются из справочной литературы.

Расчет выбросов загрязняющих веществ ведется отдельно для бензино­вых и дизельных двигателей. Одноименные загрязняющие вещества сумми­руются.

Максимально разовый выброс загрязняющих веществ G i определяется только на нагрузочном режиме, т.к. при этом происходит наибольшее выде­ление загрязняющих веществ. Расчет производят по формуле, г/с:

t H П - время обкатки двигателя n-й модели под нагрузкой, мин.

% к массе

Время работы двигателей в помещениях принимают: при разогреве - 2 мин; при установке на пост (линию) технического обслуживания - 1,0...1,5 мин; при рейсировании и выезде (въезде) - 0,2...0,5 мин; на каждые 10 м пу­ти при перемещении с поста на пост своим ходом - 1,0...1,5 мин; при регу­лировке двигателя - 10... 15 мин.

    Расчет платы за выбросы в атмосферный воздух загрязняющих веществ

Для того чтобы заинтересовать сервисные предприятия во внедрении природозащитных мероприятий на стационарных источниках выбросов за­

Количество аэрозолей свинца при работе карбюраторного двигателя на этилированном бензине будет равно:

где Q Д - количество вредных выделений от работающего дизеля, кг/ч;

V Ц - рабочий объем цилиндров двигателя, л;

Т - время работы двигателя, мин.

При работе карбюраторного двигателя:

Если на предприятии производится только холодная обкатка, то расчет выбросов загрязняющих веществ не проводится.

В помещениях участков диагностики и технического обслуживания ко­личество вредных выделений от работающего дизельного двигателя опреде­ляют по формуле:

грязняющих веществ в атмосферу, необходимы экономические рычаги и стимулы со стороны государственных органов. Величина платы, устанавли­ваемой предприятиям за загрязнение среды должна быть высокой, с тем, что­бы стимулировать их усилия на разработку эффективных мер снижения за­грязнений и проведение мероприятий по охране окружающей среды.

В основу современной системы платежей положена методика опреде­ления экономической эффективности осуществления природоохранных ме­роприятий и оценки экономического ущерба, причиняемого загрязнением окружающей среды.

Эффективность проведения мероприятий по охране окружающей сре­ды следует оценивать с позиции природы, общества и сервисного предпри­ятия. При правильно построенной системе платежей вариант, наиболее эф­фективной с позиции сервисного предприятия, должен обеспечивать боль­ший эффект для природы и общества в целом.

Плата за выбросы в атмосферу загрязняющих веществ П определяется как суммарная величина по ингредиентам загрязнений S исходя из базовых нормативов платы Б s и массы основных ингредиентов загрязнений m s , а так­же корректирующих коэффициентов к базовым нормативам, которые учиты­вают экологическую ситуацию в регионе и природно-климатические особен­ности территории, значимость объектов К эс и индексацию в связи с измене­нием уровня цен К инд.

В общем случае величину оплаты в рублях рассчитывают по формуле:

Порядок определения платы установлен постановлением Правительст­ва РФ от 12 июня 2003 г. №344 «Об утверждении порядка определения платы и ее предельных размеров за загрязнение окружающей природной среды, раз­мещение отходов, другие виды вредного воздействия» и дополняющими его подзаконными актами, в частности, распоряжениями глав местных админи­страций о порядке исчисления платежей и индикации платы на соответст­вующей территории.

Плата за загрязнение представляет собой форму возмещения экономи­ческого ущерба от выбросов загрязняющих веществ в окружающую среду. В соответствии с утвержденным порядком установлены два вида базовых нор­мативов платы Б S за выбросы 1 т загрязняющих веществ в атмосферу: в пределах установленных допустимых нормативов выбросов Б HS ; в пределах установленных лимитов выбросов Б Л S .

При определении платы за загрязнение в сравниваемых по каждому ин­гредиенту Л S загрязняющих веществ расчет ведется в зависимости от соблю­дения условий, то есть в зависимости от соотношения фактического, норма­тивного и лимитного выбросов:

при фактической массе ингредиента загрязнений меньше установлен­ного норматива (m s < m S норм).

Пожарный резервуар – это обязательное требование к любым промышленным объектам. Без него крайне сложно пройти проверку со стороны контролирующих органов. Но чтобы избежать проблем, резервуар должен соответствовать ряду требований, обеспечивать необходимую скорость заполнения водой, ее подачи к шлангам и пр. Поэтому очень важно правильно подобрать тип резервуара и рассчитать его основные параметры

Пожарный резервуар – это герметичная металлическая емкость для накопления, хранения и выдачи технической воды. Такие емкости состоят из нескольких конструктивных элементов:

  • корпус;
  • горловина;
  • опоры.

Также резервуары обычно оборудуют гидро- и теплоизоляцией и различной регулирующей и запорной арматурой. Согласно СНиП также необходимы устройства для контроля уровня воды, давления и пр.

По типу исполнения пожарные резервуары бывают:

  • горизонтальными и вертикальными;
  • подземными и надземными.


Выбор того или иного типа емкости, зависит от особенностей объекта, наличия свободной площади на территории предприятия и пр.

Расчет пожарного резервуара

Расчет объема пожарного резервуара производят на основании объема воды необходимого для тушения пожара. В среднем для производственных зданий с категорий В, Г и Д объем рассчитывают исходя из усредненных значений, минимальный расход составляет 10 л/с.

Но точный расчет осуществляется на основании большого количества факторов, по таблицам, приведенным в СНиП 2-04-02-84. В частности учитываются такие факторы:

  • класс огнестойкости здания (по СНиП 2.01.02-85);
  • категория помещений по уровню пожарной опасности;
  • этажность и площадь (объем в м³) здания;
  • потенциальное количество одновременных пожаров.

Точными расчетами пожарных резервуаров должны заниматься специалисты, имеющие необходимые лицензии и допуски на проектирование подобных конструкций. Это поможет без проблем согласовать проект с территориальными органами Государственного пожарного надзора и получить разрешение на ввод его в эксплуатацию.

Монтаж пожарного резервуара

Проектно-монтажная группа ОЛАНД специализируется на производстве металлоконструкций с 2007 года. Мы являемся предприятием полного цикла, которое располагает всеми необходимыми кадровыми и техническими ресурсами для производства емкостей любого объема. Одним из наших приоритетов является создание максимально удобных для клиентов условий сотрудничества. Поэтому мы предоставляем полный комплекс услуг:

  • проектирование;
  • производство;
  • доставка на объект и монтаж пожарных резервуаров ;
  • комплектация резервуара необходимым оборудованием;
  • авторский надзор и контроль качества;
  • техническое обслуживание.

Наша компания гарантирует высокое качество продукции и всех видов производимых работ, а также оперативное выполнение заказов.

— это место для размещения запаса воды для тушения возможного возгорания. Она должна отвечать требованиям по проектированию, указанным в СНиП 2.04.01-85 Внутренний водопровод и канализация зданий П.6. Этот объект обязательно, согласно вышеуказанной норме, должен быть возведен на территории промышленного предприятия.

Для создания пожарного запаса воды могут использоваться искусственные и естественные водоемы, если таковые имеются вблизи предприятия. При отсутствии их проектируются и строятся специальные резервуары.

Определение необходимого резервуара

Выделяют несколько видов объемов емкостей для тушения в зависимости от их особенностей и назначения:

  • пожарный;
  • регулирующий;
  • дополнительный;
  • аварийный.

Первый вид включает в себя все количество воды, которое может потребоваться в процессе тушения пожара, как на гашение огня, так и на производственные нужды в период борьбы с возгоранием. При этом учитывается, будет ли возможность у пожарных пополнить запас воды во время работы. Создается такой запас, когда нужное количество влаги нельзя получить во время тушения пожара по техническим или каким-либо другим причинам.

Регулирующий объем вычисляется соответственно графику забора и добавления воды, либо по специальной формуле. Такое количество воды хранится при условии, что есть возможность подачи воды напрямую из водопровода для тушения огня.

Аварийный запас предусматривается на случай поломок водовода, объем его определяется количеством влаги, необходимым на период ремонта.

Дополнительный предусматривается в том случае, если предприятие расположено вне населенного пункта, и если на его тушение потребуется более 40 литров в секунду.

Устройство пожарного резервуара

Пожарный резервуар представляет собой конструкцию, включающую следующие элементы:

  • подводящие трубы;
  • отводящие трубы;
  • переливное устройство;
  • вентиляция;
  • лестница;
  • спускная труба;
  • люки.

Дополнительно могут быть установлены промывочные трубопроводы, световые люки, устройства для контроля уровня воды и прочих параметров в резервуаре, датчики для предотвращения перелива.

Подводящий трубопровод оборудуется на конце диффузором, верх которого находится на метр выше максимального уровня воды. Отводящая труба имеет конфузор, установленный в днище и снабженный решеткой.

Расчет характеристики переливного устройства производится просто, это разность максимальной подачи и минимального отбора.

Для правильного функционирования спускного трубопровода, резервуар делают с небольшим уклоном днища в его сторону. Подключают трубу к канализации или отводят в специально предусмотренную для слива канаву.

Если в резервуаре храниться питьевая вода, то его еще оборудуют воздушным фильтром, чтобы она соприкасалась с очищенным воздухом. Но вентиляция должна присутствовать в любой емкости, чтобы был постоянный воздухообмен и не создавался вакуум при падении уровня воды.

Люки располагаются так, чтобы имелся непосредственный доступ к концам подводящих и отводящих труб, а также к переливному трубопроводу. Если в резервуаре вода питьевая, то лазы должны плотно закрываться, иметь запирающие механизмы и возможность опломбирования.

Расчет объема пожарного резервуара

Для расчета объема резервуара существуют специальные формулы. В них учитывается возможность подачи воды в случае возгорания и одновременного отключения электричества. Например, на предприятии есть насосная станция, которая качает воду из скважины, но если она будет обесточена во время пожара, то вода от нее поступать не будет. Наоборот, если наличие постоянно работающего водопровода учитывается как значение, уменьшающее пожарный запас.

Расчет начинается с определения количества литров в час, которое потребуется на 3-х часовое тушение пожара, поливку соседних сооружений для предотвращения их возгорания и на производственно-хозяйственные нужды предприятия в этот период времени. Это будет исходным объемом резервуара. Далее учитывается наличие водопровода и подача воды по нему, в частности ее скорость, возможность пополнить запас во время пожара, это будет уменьшающее значение.

Сразу нужно отметить, что пожарных резервуаров на предприятии должно быть, как минимум, два. Каждый из них содержать не менее половины требуемого запаса. Кроме того, они должны работать независимо друг от друга.

Грамотно спроектированный и правильно установленный резервуар, в котором хранится необходимое количество жидкости – гарант обеспечения водой для тушения возгорания предприятии. Это одна из необходимых мер противопожарной безопасности.

Вас может заинтересовать:

    Технологические процессы синтеза и разложения на фракции сложных веществ основаны на использовании эндотермических и экзотермических реакций. Перераспределение тепла в замкнутом контуре – принцип работы установки. Теплообменники в химической промышленности являются основным оборудованием, наравне с реакторами и ректификационными колоннами. В пищевой промышленности стерилизация и обеззараживание продуктов происходит при...

    Промышленный насос необходим практически на любом производстве. В отличие от бытовых насосов они должны выдерживать высокие нагрузки, быть износостойкими и иметь максимальную производительность. Кроме того, насосы подобного типа должны быть экономически выгодными для предприятия, на котором они используются. Для того чтобы купить подходящий промышленный наcос, необходимо изучить его основные характеристики и учитывать...

    Воздухосборник (ресивер) представляет собой сосуд со сжатым газом, предназначенный для нормализации давления в трубопроводах, гашения пневматических ударов, создаваемых компрессорным оборудованием, обеспечения требуемого режима работы, сбора и удаления конденсата. Эксплуатация и обслуживание воздухосборников выполняются в соответствии с нормативами, предусмотренными для аппаратов, работающих под давлением. Общие...

    Современные газгольдеры заправляют 1-3 раза в год. Количество заправок определяется номинальной емкостью резервуара, предназначенного для хранения СУГ, и интенсивностью использования газа. Что же касается непосредственно самого процесса заправки, то специалисты рекомендуют разделять его на три основных этапа: 1. Выбор сезона для заправки Лучшим временем года для заправки газгольдера считается период с февраля по июль. Именно в...



Статьи по теме