Действие персонала при альфа бета излучение. Радиация вокруг нас (ликбез). Корпускулярное испускание. Альфа-частицы

5.3. ЗАЩИТА ЛЮДЕЙ ОТ ИОНИЗИРУЮЩИХ ИЗЛУЧЕНИЙ

Воздействие ионизирующих излучений на организм человека

Ионизирующие излучения применяют для исследования изношенности деталей машин, выявления дефектов в отливках, поковках и сварных швах, испытания смазочных масел и контроля автоматизированных технологических процессов при ремонте машин.
При проведении указанных исследований применяют рентгеновские лучи и радиоактивные изотопы.
Так, например, изношенность деталей двигателей внутреннего сгорания исследуют методом радиоактивных индикаторов (меченых атомов). В данном случае радиоактивные изотопы предварительно вводят в трущиеся поверхности деталей. По мере износа этих деталей частицы металла, содержащие радиоактивную примесь, попадают в смазку, которая становится радиоактивной. По интенсивности излучения смазки определяют степень и скорость износа деталей.
К ионизирующим излучениям относятся рентгеновское, альфа-, бета-, гамма-излучения и др.
Альфа-излучение представляет собой поток ядер атомов гелия. Проникающая способность альфа-частиц, т.е. способность проходить через слой какого-либо вещества определенной толщины, небольшая. Поэтому внешнее воздействие альфа-частиц на живой организм не является опасным. Однако альфа-частицы обладают высокой ионизирующей способностью, и их попадание внутрь организма через дыхательные пути, желудочно-кишечный тракт или раны вызывает серьезные заболевания.
Бета-излучение состоит из потока электронов. Они имеют значительно большую проникающую, но меньшую ионизирующую способность по сравнению с альфа-частицами. Именно высокая проникающая способность электронов является опасным фактором при облучении этими частицами.
Гамма-лучи представляют собой электромагнитное излучение с очень короткой длиной волны. Они не только глубоко проникают в организм, но и оказывают сильное ионизирующее воздействие. Вследствие этого гамма-излучение чрезвычайно опасно для человека.
Ионизация тканей организма приводит к их разрушению в связи с расщеплением воды (ее содержание в живой ткани составляет 72%) и вступлением образовавшихся веществ в химическую реакцию с белковыми соединениями.
Чувствительность различных организмов к ионизирующему излучению неодинакова. Так, экспозиционная доза рентгеновского излучения, при которой гибнет половина организмов, подвергнувшихся облучению, равна для людей 500Р. Смертельной для человека является доза гамма- или рентгеновских лучей, составляющая 500...600Р.
Облучение может вызвать выпадение волос, ломкость ногтей, нарушение деятельности желудочно-кишечного тракта, появление катаракты, изменения в наследственных функциях, острую или хроническую лучевую болезнь.
В течение жизни человек подвергается воздействию радиоактивного излучения, исходящего от почвы и сооружений, но оно, как правило, не вызывает существенных изменений в организме.

Нормы радиационной безопасности

Мощность экспозиционной дозы естественного радиационного фона составляет 3...25мкР/ч в зависимости от местных условий, а среднегодовой естественный фон колеблется в пределах от 70 до 150мР. В горных районах, где радиоактивные вещества встречаются
в природных условиях, естественный фон выше, чем в равнинных.
При выполнении расчетов полагают, что мощность дозы естественного радиационного фона равна 10мкР/ч, или 240мкР/сут.
В соответствии с требованием обеспечения безопасных условий при работе с радиоактивными веществами и ионизирующими излучениями Нормами радиационной безопасности НРБ-76/89 установлены предельно допустимые дозы (ПДД) ионизирующих излучений и среднегодовые допустимые концентрации (СДК) радиоактивных веществ в воде и в воздухе.
С учетом последствий влияния ионизирующих излучений на организм человека выделены три категории облучаемых лиц:
. категория А - персонал (лица, которые непосредственно работают с источниками ионизирующих излучений или по роду своей работы могут подвергнуться облучению);
. категория Б - отдельные лица, проживающие на территории, где дозы излучения могут превысить установленные предельные значения;
. категория В - население в целом.
Предельно допустимые дозы при внешнем и внутреннем облучении установлены для четырех групп критических органов или тканей:
. I группа - все тело, хрусталик, красный костный мозг;
. II группа - мышцы, жировая ткань, печень, почки, селезенка, желудочно-кишечный тракт, легкие, хрусталик глаза и др.
. III группа - костная ткань, щитовидная железа и кожный покров (кроме кожи, костей, предплечий, лодыжек и стоп);
. IV группа - кости, предплечья, лодыжки и стопы.
Предельно допустимые дозы для персонала и отдельных представителей населения регламентированы НРБ-76/87. Согласно этим нормам предельно допустимая мощность эквивалентной дозы ионизирующего излучения для всего организма составляет 5бэр в год, или 100мбэр в неделю. Бэр представляет собой биологический эквивалент рентгена, равный количеству энергии любого вида излучения, которое, будучи поглощено в биологической ткани единичной массы, вызывает такой же биологический эффект, что и доза гамма- или рентгеновских лучей, равная одному рентгену.
Предельная экспозиционная доза ионизирующего излучения для всего организма при работе непосредственно с радиоактивными источниками, определяется по формуле

Где D - доза, бэр; N - возраст, годы; 18 лет - минимальный возраст персонала.

Защита от альфа-, бета- и гамма-излучений

Защита от ионизирующих излучений состоит в как можно большем снижении их интенсивности. Меры по обеспечению защиты от радиации включают в себя, в частности, выполнение санитарно-гигиенических требований к помещениям, где находятся источники излучения, и соблюдение личной гигиены.
Толщина экрана, необходимая для полного поглощения потока альфа-излучения, превосходит длину пробега альфа-частиц в материале, из которого он изготовлен. Вместо применения защитного экрана практикуется удаление облучаемого объекта от источника альфа-излучения. Защита от бета-излучения также связана с ослаблением его воздействия при помощи экрана.
С помощью рис.5.3 можно проиллюстрировать характер изменения интенсивности гамма-излучения при его распространении в веществе.
Из графика следует, что кривая интенсивности у-излучения не пересекается с осью абсцисс. Это означает, что гамма-излучение не
может быть полностью поглощено, какой бы ни была толщина слоя вещества или экрана. Можно лишь в определенной степени ослабить его интенсивность. Так, например, при толщине экрана d 0.5 интенсивность излучения ослабляется в 2 раза, а при толщине d 0.1 - в 10 раз.
Экраны, защищающие от воздействия у-излучения, изготавливают из свинца, вольфрама, нержавеющей стали, медных сплавов, чугуна, бетона и других материалов. Лучшими для этой цели считают вещества, имеющие большую атомную массу и значительную плотность.
Защитные экраны от гамма-лучей и нейтронов представляют собой сочетания материалов, имеющих большую плотность, с водой (например, свинец-вода, железо-вода или железо-графит).
Для смотровых иллюминаторов применяют прозрачные материалы, например свинцовые стекла или системы на основе жидкого наполнителя в стекле. Наполнителями в них могут служить бромистый и хлористый цинк.
Приемлемый уровень безопасности при работе с источником гамма-излучения достижим при определенных сочетаниях продолжительности
работы, расстояния до источника и его активности, которая зависит от массы вещества и убывает со временем.

Общие меры безопасности и радиационный контроль

Способы хранения и перевозки источников ионизирующих излучений, организация работы с ними и профилактические мероприятия по защите от облучения изложены в Основных санитарных правилах работы с радиоактивными веществами и другими источниками ионизирующих излучений ОСП-72/87. В соответствии с этими правилами при работе с источниками ионизирующих излучений необходимо проводить радиационный контроль - радио- и дозиметрический.
Методами радиометрического контроля можно определить загрязненность воздуха, одежды, поверхностей предметов и помещения радиоактивными веществами, тогда как дозиметрический контроль связан с измерением индивидуальных доз излучения, воздействующих на тех, кто работает с радиоактивными веществами, и интенсивность излучения на объектах, где эти вещества используются.
Радиометрический и дозиметрический контроль осуществляют ионизационным, сцинтилляционным, фотографическим и химическим методами.
В ионизационном методе используется свойство газов проводить электрический ток под действием радиоактивного излучения.
Сила тока, регистрируемая измерительным прибором, прямо пропорциональна интенсивности излучения. Сцинтилляционный метод основан на свойстве некоторых веществ люминесцировать под действием радиоактивного излучения. Фотоэмульсионный слой темнеет под действием радиоактивного излучения, причем степень потемнения зависит от дозы излучения. Это свойство используют в фотографическом методе контроля. Химический метод связан с изменением цвета некоторых растворов под действием излучения.
В зависимости от состояния радиоактивного вещества используют различные приборы и оборудование: рентгенометры, градуированные в рентгенах в час или миллирентгенах в час, и дозиметры, градуированные в рентгенах или радах.
Осуществляют три вида контроля: государственный, ведомственный и особый. Государственный контроль, выборочно проводимый радиологическим отделом территориального санэпиднадзора, направлен на выяснение общей радиационной обстановки путем анализа всех видов сырья и материалов, использующихся в данном регионе, от всех поставщиков.
При ведомственном контроле осуществляют систематическое наблюдение за содержанием радионуклидов в исходном минеральном сырье, строительных материалах, изделиях и конструкциях (при необходимости проводят контроль мощности экспозиционной дозы и объемной активности радона и дочерних продуктов его распада).
При особом контроле ведомственные организации осуществляют разовые проверки совместно со специальными отделами территориального санэпиднадзора.
Для измерения параметров радиоактивного излучения применяют различные приборы, в том числе индикаторный прибор СРП-68 или СРП-88Н (сцинтилляционный счетчик) и дозиметр типа ДРТ-ОГТ (газоразрядный счетчик).
Дозиметром ДРТ-ОГТ измеряют мощность экспозиционной дозы на рабочих местах, в смежных помещениях и на территории организаций, использующих радиоактивные вещества и другие источники ионизирующих излучений в санитарно-защитной зоне.
Он предназначен для работы в диапазоне температур 10...40°С при влажности воздуха до 90% (соответствует температуре 30°С) и атмосферном давлении 84...106,7кПа, в постоянных магнитных полях и интервале энергий фонов 0,05...3,0МэВ. Прибор измеряет мощность экспозиционной дозы в диапазонах 0,010...9,999мР/ч и 0,010...9,999Р/ч.
Типы и назначение дозиметрических приборов приведены ниже.

Альфа излучение является одним из трех радиоактивных потоков, которые возникают при распаде и представляет собой поток частиц с положительным зарядом.

Очень многих людей интересует, что же действительно оно собой представляет и какое влияние оказывает на человеческий организм.

Понятие

Ученый Э. Резерфорд решил провести эксперимент и поместил излучатель радиации в магнитное поле. В результате произошло разделение потока на три разные части – альфа, .

При проведении более подробных опытов ученому удалось определить, что же на самом деле представляет из себя альфа излучение. Частицы по своим параметрам были полностью идентичны атомам элемента гелия. Разница состоит в том, что эти частицы имеют положительный заряд, то есть у них отсутствуют оба электрона.

Альфа и бета излучение относятся корпускулярному испусканию. При этом они выходят из ядра со скоростью примерно равной двадцати тысячам километров в секунду. В результате возникает довольно сильная ионизация, которая приводит к изменению структуры вещества и его химических свойств.

Какие характеристики применимы для такого вида излучения? Чем оно отличается от других?

Характеристика:

  • Вес частиц составляет примерно 4,0015 атомных единицы,
  • Энергия таких лучей находится в диапазоне от 4 до 9 МэВ.
  • Низкая проникающая способность – это главная особенность альфа излучения.
  • Путь таких лучей равен расстоянию от источника до той точки, в которой их движение затухает. В воздушной среде длина пути может достигать одиннадцати сантиметров, а в более плотных средах она совсем минимальна.

Сильная ионизация атомов становится причиной того, что альфа частицы очень быстро теряют свою энергию. В итоге они не могут проникнуть даже через верхний слой кожных покровов. В этом случае риск радиационного излучения минимален.

Однако если такой вид излучения будет получен при использовании ускорителя, то ситуация меняется на противоположную. Происходит быстрый распад α-частиц и образование радионуклидов, представляющих довольно высокую опасность для человека. Даже микроскопической дозы хватит для возникновения лучевой болезни.

Какой спектр имеет альфа излучение? Дело в том, что в его спектре содержится очень мало частиц, способных преодолевать слишком длинное или, наоборот, короткое расстояние. Именно поэтому такое излучение является монохромным, в отличие от бета или гамма.

Откуда появляются альфа частицы? Происхождение данных элементов может быть как искусственным, так и натуральным.

Источники:

  • При ядерном распаде некоторых тяжелых элементов происходит высвобождение атомов гелия. Например, радий или торий.
  • Космическое происхождение обусловлено движением таких частиц под воздействием земного притяжения.
  • Возможно образование альфа излучения при проведении каких-либо опытов в лабораторных условиях.
  • Промышленные объекты, связанные с ядерной энергией.

Таким образом, источник α-частиц может быть самым разнообразным.

Определяется такой вид излучения с помощью специального прибора – счетчика частиц. Такие устройства показывают наличие самой частицы, атома и их характеристики. Самый известный такой детектор — счетчик Гейгера.

Как защититься от альфа-излучения

Исходя из всего вышеперечисленного, можно сделать определенный вывод о безопасности α-излучения. Для таких лучей преградой является даже просто лист бумаги. При небольшом расстоянии возможно незначительное повреждение только верхних слоев кожи. Таким образом, внешнее воздействие не оказывает негативного влияния.

А вот попадание частиц альфа излучения внутрь организма может стать очень серьезной проблемой. Произойти это может разными способами.

Способы проникновения:

  • Повреждения на кожных покровах,
  • Зараженная вода,
  • Зараженная пища.

В результате при таком заражении происходит довольно сильная ионизация внутри организма, при этом происходит образование различных окислителей, которые оказывают негативное влияние на все системы организма.

Чтобы избежать внутреннего заражения, необходимо принять определенные меры защиты.

Меры:

  • Использовать защитную одежду из специального материала в местах α-илучения.
  • Глаза необходимо защищать очками из органического стекла.
  • Если кожные покровы довольно чувствительные, то стоит смазывать их защитными кремами.
  • Не следует употреблять в пищу продукты и использовать воду, если они находились под воздействием излучения.

Помимо этого, следует знать, что можно добавить в рацион определенные продукты, а также витамины В и С, которые помогут вывести небольшие дозы излучения.

Таким образом, защита от вредного воздействия заключается в соблюдении мер безопасности.

Где используется альфа-излучения

Учитывая безопасность такого излучения во внешнем воздействии, его используют в медицинских целях.

В такой терапии используются изотопы, возникающие во время потока альфа частиц, например, радон.

Процедуры:

  • Ванны с радоном,
  • Питье воды с этим элементом,
  • Аппликации и орошения,
  • Дыхательные процедуры воздухом с наличием радона.

Научно доказано, что альфа излучение намного безопаснее и полезнее, чем бета. Это поток частиц, который проще контролировать, его требуется меньше для того, чтобы справиться со злокачественными образованиями. Помимо этого, такое лечение оказывает благоприятное влияние на многие системы организма.

Системы:

  • Сердечная,
  • Сосудистая,
  • Гинекология,
  • Двигательный аппарат.

Данная характеристика альфа излучения дает возможность считать его довольно безопасным и даже полезным для человеческого организма. Медицинские учреждения используют его для помощи даже онкологических больных. Однако не стоит забывать, что это все же радиоактивное излучение, поэтому самостоятельно злоупотреблять им не стоит.

Необходимо также опасаться проникновения внутрь частиц альфа излучения в виду их довольно серьезного и опасного влияния на организм и жизнь человека в целом. Про излучение другими вещами можно

Видео: принцип действия и источник альфа-частиц

Альфа-излучение (альфа-лучи) - это один из видов ионизирующих излучений; представляет собой поток быстро движущихся, обладающих значительной энергией, положительно заряженных частиц (альфа-частиц).

Основным источником альфа-излучения служат альфа-излучатели - , испускающие альфа-частицы в процессе распада. Особенностью альфа-излучений является его малая проникающая способность. Пробег альфа-частиц в веществе (то есть путь, на котором они производят ионизацию) оказывается очень коротким (сотые доли миллиметра в биологических средах, 2,5-8 см в воздухе).

Однако вдоль короткого пути альфа-частицы создают большое число ионов, то есть обусловливают большую линейную плотность ионизации. Это обеспечивает выраженную относительную биологическую эффективность, в 10 раз большую, чем при воздействии рентгеновского и . При внешнем облучении тела альфачастицы могут (при достаточно большой поглощенной дозе излучения) вызывать сильные, хотя и поверхностные (короткий пробег) ожоги; при попадании через долгоживущие альфа-излучатели разносятся по телу током крови и депонируются в органах и др., вызывая внутреннее облучение организма. Альфа-излучение применяют для лечения некоторых заболеваний. См. также , Излучения ионизирующие.

Альфа-излучение - поток положительно заряженных α-частиц (ядер атомов гелия).

Основным источником альфа-излучения являются естественные радиоактивные изотопы, многие из которых испускают при распаде альфа-частицы с энергией от 3,98 до 8,78 Мэв. Благодаря большой энергии, двукратному (по сравнению с электроном) заряду и относительно небольшой (по сравнению с другими видами ионизирующих излучений) скорости движения (от 1,4·10 9 до 2,0·10 9 см/сек) альфа-частицы создают очень большое число ионов, густо расположенных по их пути (до 254 тыс. пар ионов). При этом они быстро расходуют свою энергию, превращаясь в обычные атомы гелия. Пробеги альфа-частиц в воздухе при нормальных условиях - от 2,50 до 8,17 см; в биологических средах - сотые доли миллиметра.

Линейная плотность ионизации, создаваемой альфа-частицами, достигает нескольких тысяч пар ионов на 1 микрон пути в тканях.

Ионизация, производимая альфа-излучением, обусловливает ряд особенностей в тех химических реакциях, которые протекают в веществе, в частности в живой ткани (образование сильных окислителей, свободного водорода и кислорода и др.). Эти радиохимические реакции, протекающие в биологических тканях под воздействием альфа-излучения, в свою очередь вызывают особую, большую, чем у других видов ионизирующих излучений, биологическую эффективность альфа-излучения. По сравнению с рентгеновским, бета- и гамма-излучением относительная биологическая эффективность альфа-излучения (ОБЭ) принимается равной 10, хотя в различных случаях она может меняться в широких пределах. Как и другие виды ионизирующих излучений, альфа-излучение применяется для лечения больных с различными заболеваниями. Этот раздел лучевой терапии называется альфа-терапией (см.).

См. также Излучения ионизирующие, Радиоактивность.

альфа, бета- (группа корпускулярных излучений), гамма-излучения- (группа волновых).

Корпускулярные представляют собой потоки невидимых элементарных частиц, имеющих массу и диаметр. Волновые излучения имеют квантовую природу. Это электромагнитные волны в сверхкоротковолновом диапазоне.

Альфа-излучение представляет собой поток альфа-частиц, распространяющихся с начальной скоростью около 20 тыс. км/с. Их ионизирующая способность огромна, а так как на каждый акт ионизации тратится определенная энергия, то их проникающая способность незначительна: длина пробега в воздухе составляет 3-11 см, а в жидких и твердых средах - сотые доли миллиметра. Лист плотной бумаги полностью задерживает их. Надежной защитой от альфа-частиц является также одежда человека.Поскольку альфа-излучение имеет наибольшую ионизирующую, но наименьшую проникающую способность, внешнее облучение альфа-частицами практически безвредно, но попадание их внутрь организма весьма опасно.

Бета-излучение - поток бета-частиц, которые в зависимости от энергии излучения могут распространяться со скоростью, близкой к скорости света (300 тыс. км/с). Заряд бета-частиц меньше, а скорость больше, чем у альфа-частиц, поэтому они имеют меньшую ионизирующую, но большую проникающую способность. Длина пробега бета-частиц с высокой энергией составляет в воздухе до 20 м, воде и живых тканях - до 3 см, металле - до 1 см. На практике бета-частицы почти полностью поглощают оконные или автомобильные стекла и металлические экраны толщиной в несколько миллиметров. Одежда поглощает до 50 % бета-частиц.При внешнем облучении организма на глубину около 1 мм проникает 20-25 % бета-частиц. Поэтому внешнее бета-облучение представляет серьезную опасность лишь при попадании радиоактивных веществ непосредственно на кожу (особенно на глаза) или же внутрь организма.

Гамма-излучение - это электромагнитное излучение, испускаемое ядрами атомов при радиоактивных превращениях. Оно, как правило, сопровождает бета-распад, реже альфа-распад. По своей природе гамма-излучение представляет собой электромагнитное поле с длиной волны 10~8-10~и см. Оно испускается отдельными порциями (квантами) и распространяется со скоростью света. Ионизирующая способность его значительно меньше, чем у бета-частиц и тем более у альфа-частиц.Зато гамма-излучение имеет наибольшую проникающую способность и в воздухе может распространяться на сотни метров. Для ослабления его энергии в два раза необходим слой вещества (слой половинного ослабления) толщиной: воды - 23 см, стали - около 3, бетона - 10, дерева - 30 см.Из-за наибольшей проникающей способности гамма-излучение является важнейшим фактором поражающего действия радиоактивных излучений при внешнем облучении.Хорошей защитой от гамма-излучений являются тяжелые металлы, например свинец, который для этих целей используется наиболее часто.

100.Действие радиации на человека

По сравнению с другими повреждающими факторами ионизирующее излучение (радиация) изучено лучше всего. Как радиация действует на клетки? При делении атомных ядер высвобождается большая энергия, способная отрывать электроны от атомов окружающего вещества. Этот процесс называется ионизаций, а несущее энергию электромагнитное излучение – ионизирующим. Ионизированный атом меняет свои физические и химические свойства. Следовательно, изменяются свойства молекулы, в которую он входит. Чем выше уровень радиации, тем больше число актов ионизации, тем больше будет поврежденных клеток. Погибшие клетки организм замещает новыми в течение дней или недель, а клетки-мутанты эффективно выбраковывает. Этим занимается иммунная система. Но иногда защитные системы дают сбой. Результатом в отдаленном времени может быть рак или генетические изменения у потомков, в зависимости от типа поврежденной клетки (обычная или половая клетка). Ни тот, ни другой исход не предопределен заранее, но оба имеют некоторую вероятность. Самопроизвольные случаи рака называют спонтанными. Если установлена ответственность того или иного агента за возникновение рака, говорят, что рак был индуцированным.

Если доза облучения превышает природный фон в сотни раз, это становится заметным для организма. Важно не то, что это радиация, а то, что защитным системам организма труднее справляться с возросшим числом повреждений. Из-за участившихся сбоев возникает дополнительные «радиационные» раки. Их количество может составлять несколько процентов от числа спонтанных раков.

Очень большие дозы, это - в тысячи раз выше фона. При таких дозах основные трудности организма связаны не с измененными клетками, а с быстрой гибелью важных для организма тканей. Организм не справляется с восстановлением нормального функционирования самых уязвимых органов, в первую очередь, красного костного мозга, который относится к системе кроветворения. Появляются признаки острого недомогания - острая лучевая болезнь. Если радиация не убьет сразу все клетки костного мозга, организм со временем восстановится. Выздоровление после лучевой болезни занимает не один месяц, но дальше человек живет нормальной жизнью.Вылечившись после лучевой болезни, люди несколько чаще, чем их необлученные сверстники болеют раком.На несколько процентов.Это следует из наблюдений за пациентами в разных странах мира, прошедшими курс радиотерапии и получившими достаточно большие дозы облучения, за сотрудниками первых ядерных предприятий, на которых еще не было надежных систем радиационной защиты, а также за пережившими атомную бомбардировку японцами, и чернобыльскими ликвидаторами. Среди перечисленных групп самые высокие дозы были у жителей Хиросимы и Нагасаки. За 60 лет наблюдений у 86,5 тысяч человек с дозами в 100 и более раз выше природного фона было на 420 случаев смертельного рака больше, чем в контрольной группе (увеличение примерно на 10 %). В отличие от симптомов острой лучевой болезни, которые проявляются через часы или дни, рак возникает не сразу, может быть, через 5, 10 или 20 лет. Для разных локализаций рака скрытый период разный. Быстрее всего, в первые пять лет, развивается лейкоз (рак крови). Именно это заболевание считается индикатором радиационного воздействия при дозах облучения в сотни и тысячи раз выше фона.

Результат воздействия

Доза от естественных источников в год

Предельно допустимая доза профессионального облучения в год

Уровень удвоения вероятности генных мутаций

Однократная доза оправданного риска в чрезвычайных обстоятельствах

Доза возникновения острой лучевой болезни

Без лечения 50% облученных умирает в течение 1-2 месяцев вследствие нарушения деятельности клеток костного мозга

Смерть наступает через 1-2 недели вследствие поражений главным образом желудочно кишечного тракта

Смерть наступает через несколько часов или дней вследствие повреждения центральной нервной системы

Радиация стала изучаться относительно недавно. Одним из ученых, который внес в сферу изучения этого явления весомый вклад, стал Резерфорд. Он был автором теперь уже классического опыта на основе помещения радиоактивного излучателя в магнитное поле. Использованный в экспериментах радиоактивный пучок разделился на три составляющих. Те лучи, которые испытали минимальное отклонение, получили название альфа-лучи. С тех пор облучение из этой гаммы стало использоваться во благо. Но существует ряд случаев, когда подобное излучение наносило вред живому.

Основные источники альфа-излучения

Усовершенствовав методику изучения радиационного влияния, англичанин Резерфорд выяснил, что отклонение альфа-излучения фиксируется также в электрическом поле. Было замечено, что лучи больше тяготеют к отрицательному полюсу.

Так было установлено, что альфа-облучение относится к категории положительных частиц. Их параметры идентичны показателям гелиевых ядер. У обычного атома этого элемента в составе содержится всего пара электронов. В научной среде такие лучи носят название α-излучение.

Разобравшись с тем, ученые начали искать его первоисточники. Схематически их можно разделить на две равноценные категории:

  • естественные,
  • искусственные.

Всего существует четыре основных источника излучения разного происхождения:

  • Испускание ядер гелия. Происходит ядерный распад тяжелых элементов вроде радия, либо тория.
  • Межзвездный газ. Возникает из-за ускорения гелиевых ядер из космического пространства, которые стремятся преодолеть земное тяготение.
  • Научные эксперименты. Опыты, которые проводятся специалистами в условиях радиоизотопных лабораторий, должны включать в себя ускорители заряженных частиц. Все вместе это генерирует нужное облучение.
  • Промышленность. Подразумевает под собой различные объекты урановой индустрии и ядерные реакторы.

Особенности α-лучей в разных средах

Кроме необходимости знать, что такое альфа-излучение для защиты себя от его влияния, нужно разбираться в его особенностях.

Стартовая скорость таких частиц варьируется в рамках 14-20 тысяч км/с. По сравнению с бета-частицами они считаются более массивными. Разница составляет более 7300 раз. Из-за этого ионизирующая способность лучей считается высокой.

Среднестатистический показатель создания пара ионов тут составляет 200000 раз. Для этого должны быть соблюдены основные условия: свободное движение в воздухе, температура окружающей среды в 15 градусов и обычное атмосферное давление.

Но срок «жизнеспособности» этих частиц довольно ограничен. Вызвано это тем, что при ионизации требуются многочисленные энергетические затраты. После того как частицы начинают последовательно тормозить, их способность к ионизации значительно возрастает.

Свободный пробег частиц из альфа-гаммы по воздуху составляет не более 11 см при благоприятной среде. А вот жидкая и твердая среды не благоприятны для проникновения лучей. Здесь они не могут продвинуться даже на миллиметр.

Сферы использования альфа-излучения

Многие люди напуганы мифами касательно поражающей способности альфа-излучения, путая его с опасными рентгенологическими лучами.

После тщательного изучения особенностей альфа-частиц, ученые разработали отдельное направление терапии. Оно включает в себя дозированное воздействие на организм человека для достижения узкого круга результатов во благо улучшения здоровья.

Главными «действующими лицами» в подобных процедурах выступают изотопы вроде радона и торона. Они имеют строго ограниченный срок жизнедеятельности, из-за чего выводятся из организма естественным путем оперативно.

С их помощью медики проводят следующий спектр процедур:

  • ванны с привлечением радона;
  • употребление радоновой воды вовнутрь;
  • аппликации и орошения на основе радона;
  • ингаляции с радоновым компонентом.

Согласно некоторым исследованиям, альфа-лучи считается более эффективным и безопасным решением для больных, нежели более разрекламированное бета-облучение. Объясняется это тем, что альфа-частицы могут направляться сфокусировано на строго определенный участок. Это гарантирует возможность уничтожить опасные болезнетворные клетки точечно.

Этот метод был взят на вооружение ведущими мировыми онкологами при лечении раковых опухолей. Он пользуется спросом и из-за того, что позволяет снизить число нужных для полного курса лечения процедур по сравнению с бета-облучением.

Главными действиями, которыми обладает альфа-терапия, называют:

  • противовоспалительное,
  • обезболивающее,
  • успокаивающее.

Благодаря всему вышеперечисленному терапию стали задействовать при лечении заболеваний из области гинекологии и сердечно-сосудистых проблем. Передовые технологии позволяют прибегать к помощи альфа-частиц при лечении опорно-двигательного аппарата.

Но перед тем как включить представленную терапию в перечень медицинских процедур, прошедших одобрение, ученые годами исследовали влияние альфа-лучей. В ходе экспериментов они научились вычислять предельно допустимые дозировки для человека, оптимальные механизмы воздействия. Также исследователи создали целый ряд методов защиты от «прирученной» радиации.

Как защитить себя от альфа-излучения?

Защита от альфа-излучения базируется на особенностях проникающей способности лучей. Из-за своей короткой длины и ионизирующих возможностей альфа-лучи способны проникнуть в организм человека только на небольшую глубину. На практике это означает, что частицы лишь повреждают поверхность кожи. Но это правило распространяется только на внешнее прямое попадание лучей.

Если α-облучение осуществлялось с пищей или посредством ранее поврежденного покрова, то негативное воздействия лучей увеличивается. В таком случае у пациента фиксируют тяжелое отравление, инициатором которого стали массивные частицы. Они образовывают окислители, свободный кислород и водород.

Если производить облучение высокими дозами бесконтрольно и на регулярной основе, то лучи могут негативно сказаться на самочувствии. Опасные частицы могут накапливаться в гипофизе или коре надпочечников. После они начинают работать над уменьшением адаптационных свойств организма.

Но если сравнивать защиту от альфа, бета, между собой, то первый вариант считается самым простым. Вызвано это доказанной относительной безобидностью такого потока частиц. Из-за этого людям не требуется защищаться от его влияния особенными средствами. Достаточно просто отойти на 20 сантиметров от объекта излучения, чтобы оказаться в зоне безопасности.

Если невозможно отойти на рекомендуемое расстояние, то в качестве блокиратора выступает:

  • обычная бумага;
  • слой ткани;
  • тонкая пластина алюминия.

Даже обычная плотная одежда может стать полноценным барьером, помогающим защититься от облучения.

Гораздо сложнее дела обстоят с внутренним облучением. Чтобы не допустить столь серьезного расклада, стоит сработать на опережение. Речь идет о полном недопущении попадания радионуклидов внутрь организма. На помощь могут прийти средства для индивидуальной защиты:

  • спецодежда, включая обувь, на основе ряда особых материалов;
  • щитки из оргстекла для защиты органов зрения;
  • дерматологические кремы, которые защищают чувствительную кожу.

Отдельно доктора составили список продуктов, которые позволяют значительно ускорить вывод опасных радионуклидов из человеческого организма.

В перечень попали продукты питания, которые содержат в своем составе витамины группы В и С. Если доза облучения была незначительной, то справиться с ней могут даже перепелиные яйца. Объясняется это тем, что яйца перепелок содержат в себе ряд полезным аминокислот и вещества, имеющие доказанное радиозащитное действие.

В растительном мире обратить внимание следует на топинамбур. Он практически единственный овощ, который не накапливает радиоактивные элементы.

Еще одним интересным фактом об альфа-излучении выступает невозможность диагностировать его в пространстве обычными дозиметрами. Вызвано это специфичной маленькой способность к проникновению.

Выручить в спорной ситуации сможет только счетчик Гейгера. Он оповестит оператора о возможной угрозе, что гарантирует возможность принять оперативные меры по предотвращению бесконтрольного облучения.



Статьи по теме