Построение графиков функций механическими преобразованиями. Проект на тему "преобразование графиков функции". Простейшие преобразования графиков функций

Какие из данных функций имеют обратную? Для таких функций найти обратные функции:

4.12. а)

y = x ;

б) y = 6 −3 x ;

г) y =

д) y = 2 x 3 +5 ;

4.13. а)

y = 4 x − 5 ;

y = 9 − 2 x − x 2 ;

y = sign x ;

y =1 + lg(x + 2) ;

y = 2 x 2 +1 ;

x − 2

при x < 0

в) y =

−x

при x ≥ 0

Выяснить, какие из данных функций монотонны, какие – строго монотонны, а какие – ограничены:

4.14. а)

f (x) = c, c R ;

б) f (x ) = cos 2 x ;

в) f (x ) = arctg x ;

г) f (x ) = e 2 x ;

д) f (x ) = −x 2 + 2 x ;

е) f (x ) =

2x + 5

y = ctg7 x .

4.15. а)

f (x ) = 3− x

б) f (x ) =

f (x) =

x + 3

x + 6

x < 0,

3x + 5

г) f (x ) = 3 x 3 − x ;

− 10 при

f (x) =

д) f (x ) =

x 2 при

x ≥ 0;

x + 1

f (x ) = tg(sin x ).

4.2. Элементарные функции. Преобразование графиков функций

Напомним, что графиком функции f (x ) в декартовой прямоугольной системе координат Oxy называется множество всех точек плоскости с координатами (x , f (x )) .

Часто график функции y = f (x ) можно построить с помощью преобразований (сдвиг, растяжение) графика некоторой уже известной функции.

В частности, из графика функции y = f (x ) получается график функции:

1) y = f (x ) + a – сдвигом вдоль оси Oy на a единиц (вверх, если a > 0 , и вниз, если a < 0 ;

2) y = f (x −b ) – сдвигом вдоль оси Ox на b единиц (вправо, если b > 0 ,

и влево, если b < 0 ;

3) y = kf (x ) – растяжением вдоль оси Oy в k раз;

4) y = f (mx ) – сжатием по оси Ox в m раз;

5) y = − f (x ) – симметричным отражением относительно оси Ox ;

6) y = f (−x ) – симметричным отражением относительно оси Oy ;

7) y = f (x ) , следующим образом: часть графика, расположенная не

ниже оси Ox , остается без изменений, а «нижняя» часть графика симметрично отражается относительно оси Ox ;

8) y = f (x ) , следующим образом: правая часть графика (при x ≥ 0 )

остается без изменений, а вместо «левой» строится симметричное отражение «правой» относительно оси Oy .

Основными элементарными функциями называются:

1) постоянная функция y = c ;

2) степенная функция y = x α , α R ;

3) показательная функция y = a x , a ≠ 0, a ≠1 ;

4) логарифмическая функция y = log a x , a > 0, a ≠ 1 ;

5) тригонометрические функции y = sin x , y = cos x , y = tg x ,

y = ctg x , y = sec x (где sec x = cos 1 x ), y = cosec x (где cosec x = sin 1 x );

6) обратные тригонометрические функции y = arcsin x , y = arccos x , y = arctg x , y = arcctg x .

Элементарными функциями называются функции, полученные из основных элементарных функций с помощью конечного числа арифметических операций (+, − , ÷) и композиций (т.е. образования сложных функций f g ).

Пример 4.6. Построить график функции

1) y = x 2 + 6 x + 7 ; 2) y = −2sin 4 x .

Решение: 1) путем выделения полного квадрата функция преобразуется к виду y = (x +3) 2 − 2 , поэтому график данной функции можно получить из графика функции y = x 2 . Достаточно сначала сместить параболу y = x 2 на три единицы влево (получим график функции y = (x +3) 2 ), а затем на две единицы вниз (рис. 4.1);

стандартную

синусоиду

y = sin x

в четыре раза по оси

Ox ,

получим график функции y = sin 4 x (рис. 4.2).

y= sin4x

y=sin x

Растянув полученный график в два раза вдоль оси Oy , получим график функции y = 2sin 4 x (рис. 4.3). Осталось отразить последний график относительно оси Ox . Результатом будет искомый график(см. рис. 4.3).

y= 2sin4x

y=– 2sin4 x

Задачи для самостоятельного решения

Построить графики следующих функции, исходя из графиков основных элементарных функций:

4.16. а) y = x 2 −6 x +11 ;

4.17. а) y = −2sin(x −π ) ;

4.18. а) y = − 4 x −1 ;

4.19. а) y = log 2 (−x ) ;

4.20. a) y = x +5 ;

4.21. а) y = tg x ;

4.22. а) y = sign x ;

4.23. а) y = x x + + 4 2 ;

y = 3 − 2 x − x 2 .

y = 2cos 2 x .

В зависимости от условий протекания физических процессов одни величины принимают постоянные значения и называются константами, другие - изменяются в определенных условиях и называются переменными.

Внимательное изучение окружающей среды показывает, что физические величины зависимы друг от друга, т. е. изменение одних величин влечет за собой изменение других.

Математический анализ занимается изучением количественных соотношений взаимно -изменяющихся величин, отвлекаясь от конкретного физического смысла. Одним из основных понятий математического анализа есть понятие функции.

Рассмотрим элементы множества и элементы множества
(рис. 3.1).

Если устанавливается некоторое соответствие между элементами множеств
и в виде правила , то тем самым отмечают, что определяется функция
.

Определение 3.1. Соответствие, которое связывает с каждым элементомне пустого множества
некоторый, вполне определенный, элементне пустого множества ,называется функцией или отображением
в .

Символически отображение
в записывается следующим образом:

.

При этом множество
называется областью определения функции и обозначается
.

В свою очередь, множество называется областью значений функции и обозначается
.

Кроме того, необходимо отметить, что элементы множества
называют независимыми переменными, элементы множества называют зависимыми переменными.

Способы задания функции

Функция может задаваться следующими основными способами: табличным, графическим, аналитическим.

Если на основании экспериментальных данных составляют таблицы, в которых содержатся значения функции и соответствующие им значения аргумента, то такой способ задания функции называют табличным.

В то же время, если некоторые исследования результата эксперимента выводят на регистратор (осциллограф, самописец и т. д.), то отмечают, что функция задается графически.

Наиболее распространенным есть аналитический способ задания функции, т.е. способ, при котором с помощью формулы связывают независимую и зависимую переменные. При этом существенную роль играет область определения функции:

разные, хотя они и задаются одинаковыми аналитическими соотношениями.

Если задают только формулу функции
, то считают, что область определения этой функции совпадает с множеством тех значений переменной, для которых выражение
имеет смысл. В этой связи особую роль играет проблема нахождения области определения функции.

Задача 3.1. Найти область определения функции

Решение

Первое слагаемое принимает действительные значения при
,а второе при. Таким образом, для нахождения области определения заданной функции необходимо решить систему неравенств:

В результате решения такой системы получают . Следовательно, область определения функции есть отрезок
.

Простейшие преобразования графиков функций

Построение графиков функций можно существенно упростить, если пользоваться известными графиками основных элементарных функций. Основными элементарными функциями называются следующие функции:

1)степенная функция
где
;

2)показательная функция
где
и
;

3)логарифмическая функция
, где -любое положительное число, отличное от единицы:
и
;

4)тригонометрические функции




;
.

5)обратные тригонометрические функции
;
;
;
.

Элементарными функциями называются функции, получающиеся из основных элементарных функций с помощью четырех арифметических действий и суперпозиций, примененных конечное число раз.

Простые геометрические преобразования также позволяют упростить процесс построения графика функций. Эти преобразования основываются на следующих утверждениях:

    График функции y=f(x+a) есть графикy=f(x), сдвинутый (при a >0 влево, при a < 0 вправо) на |a| единиц параллельно осиOx.

    График функции y=f(x) +bесть графикy=f(x), сдвинутый (приb>0 вверх, приb< 0 вниз) на |b| единиц параллельно осиOy.

    График функции y = mf(x) (m0) есть график y = f(x), растянутый (приm>1) вmраз или сжатый (при 0

    График функции y = f(kx) есть график y = f(x), сжатый (при k >1) в k раз или растянутый (при 0< k < 1) вдоль оси Ox. При –< k < 0 график функции y = f(kx) есть зеркальное отображение графика y = f(–kx) от оси Oy.

Преобразование графиков функций

В этой статье я познакомлю вас с линейными преобразованиями графиков функций и покажу, как с помощью этих преобразований из графика функции получить график функции

Линейным преобразованием функции называется преобразование самой функции и/или ее аргумента к виду , а также преобразование, содержащее модуль аргумента и/или функции.

Наибольшие затруднения при построении графиков с помощью линейных преобразований вызывают следующие действия:

  1. Вычленение базовой функции, собственно, график которой мы и преобразовываем.
  2. Определения порядка преобразований.

И менно на этих моментах мы и остановимся подробнее.

Рассмотрим внимательно функцию

В ее основе лежит функция . Назовем ее базовой функцией .

При построении графика функции мы совершаем преобразования графика базовой функции .

Если бы мы совершали преобразования функции в том же порядке, в каком находили ее значение при определенном значении аргумента, то

Рассмотрим какие виды линейных преобразований аргумента и функции существуют, и как их выполнять.

Преобразования аргумента.

1. f(x) f(x+b)

1. Строим график фунции

2. Сдвигаем график фунции вдоль оси ОХ на |b| единиц

  • влево, если b>0
  • вправо, если b<0

Построим график функции

1. Строим график функции

2. Сдвигаем его на 2 единицы вправо:


2. f(x) f(kx)

1. Строим график фунции

2. Абсциссы точек графика делим на к, ординаты точек оставляем без изменений.

Построим график функции .

1. Строим график функции

2. Все абсциссы точек графика делим на 2, ординаты оставляем без изменений:


3. f(x) f(-x)

1. Строим график фунции

2. Отображаем его симметрично относительно оси OY.

Построим график функции .

1. Строим график функции

2. Отображаем его симметрично относительно оси OY:


4. f(x) f(|x|)

1. Строим график функции

2. Часть графика, расположенную левее оси ОY стираем, часть графика, расположенную правее оси ОY Достраиваем симметрично относительно оси OY:

График функции выглядит так:


Построим график функции

1. Строим график функции (это график функции , смещенный вдоль оси ОХ на 2 единицы влево):


2. Часть графика, расположенную левее оси OY (x<0) стираем:

3. Часть графика, расположенную правее оси OY (x>0) достраиваем симметрично относительно оси OY:


Важно! Два главных правила преобразования аргумента.

1. Все преобразования аргумента совершаются вдоль оси ОХ

2. Все преобразования аргумента совершаются "наоборот" и "в обратном порядке".

Например, в функции последовательность преобразований аргумента такая:

1. Берем модуль от х.

2. К модулю х прибавляем число 2.

Но построение графика мы совершали в обратном порядке:

Сначала выполнили преобразование 2. - сместили график на 2 единицы влево (то есть абсциссы точек уменьшили на 2, как бы "наоборот")

Затем выполнили преобразование f(x) f(|x|).

Коротко последовательность преобразований записывается так:



Теперь поговорим о преобразовании функции . Преобразования совершаются

1. Вдоль оси OY.

2. В той же последовательности, в какой выполняются действия.

Вот эти преобразования:

1. f(x)f(x)+D

2. Смещаем его вдоль оси OY на |D| единиц

  • вверх, если D>0
  • вниз, если D<0

Построим график функции

1. Строим график функции

2. Смещаем его вдоль оси OY на 2 единицы вверх:


2. f(x)Af(x)

1. Строим график функции y=f(x)

2. Ординаты всех точек графика умножаем на А, абсциссы оставляем без изменений.

Построим график функции

1. Построим график функции

2. Ординаты всех точек графика умножим на 2:


3. f(x)-f(x)

1. Строим график функции y=f(x)

Построим график функции .

1. Строим график функции .

2. Отображаем его симметрично относительно оси ОХ.


4. f(x)|f(x)|

1. Строим график функции y=f(x)

2. Часть графика, расположенную выше оси ОХ оставляем без изменений, часть графика, расположенную ниже оси OX, отображаем симметрично относительно этой оси.

Построим график функции

1. Строим график функции . Он получается смещением графика функции вдоль оси OY на 2 единицы вниз:


2. Теперь часть графика, расположенную ниже оси ОХ, отобразим симметрично относительно этой оси:


И последнее преобразование, которое, строго говоря, нельзя назвать преобразованием функции, поскольку результат этого преобразования функцией уже не является:

|y|=f(x)

1. Строим график функции y=f(x)

2. Часть графика, расположенную ниже оси ОХ стираем, затем часть графика, расположенную выше оси ОХ достраиваем симметрично относительно этой оси.

Построим график уравнения

1. Строим график функции :


2. Часть графика, расположенную ниже оси ОХ стираем:


3. Часть графика, расположенную выше оси ОХ достраиваем симметрично относительно этой оси.

И, наконец, предлагаю вам посмотреть ВИДЕОУРОК в котором я показываю пошаговый алгоритм построения графика функции

График этой функции выглядит так:


Параллельный перенос.

ПЕРЕНОС ВДОЛЬ ОСИ ОРДИНАТ

f(x) => f(x) - b
Пусть требуется построить график функции у = f(х) - b. Нетрудно заметить, что ординаты этого графика для всех значений x на |b| единиц меньше соответствующих ординат графика функций у = f(х) при b>0 и на |b| единиц больше - при b 0 или вверх при b Для построения графика функции y + b = f(x) следует построить график функции y = f(x) и перенести ось абсцисс на |b| единиц вверх при b>0 или на |b| единиц вниз при b

ПЕРЕНОС ВДОЛЬ ОСИ АБСЦИСС

f(x) => f(x + a)
Пусть требуется построить график функции у = f(x + a). Рассмотрим функцию y = f(x), которая в некоторой точке x = x1 принимает значение у1 = f(x1). Очевидно, функция у = f(x + a) примет такое же значение в точке x2, координата которой определяется из равенства x2 + a = x1, т.е. x2 = x1 - a, причем рассматриваемое равенство справедливо для совокупности всех значений из области определения функции. Следовательно, график функции у = f(x + a) может быть получен параллельным перемещением графика функции y = f(x) вдоль оси абсцисс влево на |a| единиц при a > 0 или вправо на |a| единиц при a Для построения графика функции y = f(x + a) следует построить график функции y = f(x) и перенести ось ординат на |a| единиц вправо при a>0 или на |a| единиц влево при a

Примеры:

1.y=f(x+a)

2.y=f(x)+b

Отражение.

ПОСТРОЕНИЕ ГРАФИКА ФУНКЦИИ ВИДА Y = F(-X)

f(x) => f(-x)
Очевидно, что функции y = f(-x) и y = f(x) принимают равные значения в точках, абсциссы которых равны по абсолютной величине, но противоположны по знаку. Иначе говоря, ординаты графика функции y = f(-x) в области положительных (отрицательных) значений х будут равны ординатам графика функции y = f(x) при соответствующих по абсолютной величине отрицательных (положительных) значениях х. Таким образом, получаем следующее правило.
Для построения графика функции y = f(-x) следует построить график функции y = f(x) и отразить его относительно оси ординат. Полученный график является графиком функции y = f(-x)

ПОСТРОЕНИЕ ГРАФИКА ФУНКЦИИ ВИДА Y = - F(X)

f(x) => - f(x)
Ординаты графика функции y = - f(x) при всех значениях аргумента равны по абсолютной величине, но противоположны по знаку ординатам графика функции y = f(x) при тех же значениях аргумента. Таким образом, получаем следующее правило.
Для построения графика функции y = - f(x) следует построить график функции y = f(x) и отразить его относительно оси абсцисс.

Примеры:

1.y=-f(x)

2.y=f(-x)

3.y=-f(-x)

Деформация.

ДЕФОРМАЦИЯ ГРАФИКА ВДОЛЬ ОСИ ОРДИНАТ

f(x) => k f(x)
Рассмотрим функцию вида y = k f(x), где k > 0. Нетрудно заметить, что при равных значениях аргумента ординаты графика этой функции будут в k раз больше ординат графика функции у = f(x) при k > 1 или 1/k раз меньше ординат графика функции y = f(x) при k Для построения графика функции y = k f(x) следует построить график функции y = f(x) и увеличить его ординаты в k раз при k > 1(произвести растяжение графика вдоль оси ординат) или уменьшить его ординаты в 1/k раз при k
k > 1 - растяжение от оси Ох
0 - сжатие к оси OX


ДЕФОРМАЦИЯ ГРАФИКА ВДОЛЬ ОСИ АБСЦИСС

f(x) => f(k x)
Пусть требуется построить график функции y = f(kx), где k>0. Рассмотрим функцию y = f(x), которая в произвольной точке x = x1 принимает значение y1 = f(x1). Очевидно, что функция y = f(kx) принимает такое же значение в точке x = x2, координата которой определяется равенством x1 = kx2, причем это равенство справедливо для совокупности всех значений х из области определения функции. Следовательно, график функции y = f(kx) оказывается сжатым (при k 1) вдоль оси абсцисс относительно графика функции y = f(x). Таким образом, получаем правило.
Для построения графика функции y = f(kx) следует построить график функции y = f(x) и уменьшить его абсциссы в k раз при k>1 (произвести сжатие графика вдоль оси абсцисс) или увеличить его абсциссы в 1/k раз при k
k > 1 - сжатие к оси Оу
0 - растяжение от оси OY




Работу выполнили Чичканов Александр, Леонов Дмитрий под руководством Ткач Т.В, Вязовова С.М, Островерховой И.В.
©2014

Показательная функция - это обобщение произведения n чисел, равных a :
y(n) = a n = a·a·a···a ,
на множество действительных чисел x :
y(x) = a x .
Здесь a - фиксированное действительное число, которое называют основанием показательной функции .
Показательную функцию с основанием a также называют экспонентой по основанию a .

Обобщение выполняется следующим образом.
При натуральном x = 1, 2, 3,... , показательная функция является произведением x множителей:
.
При этом она обладает свойствами (1.5-8) (), которые следуют из правил умножения чисел. При нулевом и отрицательных значениях целых чисел , показательную функцию определяют по формулам (1.9-10). При дробных значениях x = m/n рациональных чисел, , ее определяют по формуле(1.11). Для действительных , показательную функцию определяют как предел последовательности:
,
где - произвольная последовательность рациональных чисел, сходящаяся к x : .
При таком определении, показательная функция определена для всех , и удовлетворяет свойствам (1.5-8), как и для натуральных x .

Строгая математическая формулировка определения показательной функции и доказательство ее свойств приводится на странице «Определение и доказательство свойств показательной функции ».

Свойства показательной функции

Показательная функция y = a x , имеет следующие свойства на множестве действительных чисел () :
(1.1) определена и непрерывна, при , для всех ;
(1.2) при a ≠ 1 имеет множество значений ;
(1.3) строго возрастает при , строго убывает при ,
является постоянной при ;
(1.4) при ;
при ;
(1.5) ;
(1.6) ;
(1.7) ;
(1.8) ;
(1.9) ;
(1.10) ;
(1.11) , .

Другие полезные формулы.
.
Формула преобразования к показательной функции с другим основанием степени:

При b = e , получаем выражение показательной функции через экспоненту:

Частные значения

, , , , .

На рисунке представлены графики показательной функции
y(x) = a x
для четырех значений основания степени : a = 2 , a = 8 , a = 1/2 и a = 1/8 . Видно, что при a > 1 показательная функция монотонно возрастает. Чем больше основание степени a , тем более сильный рост. При 0 < a < 1 показательная функция монотонно убывает. Чем меньше показатель степени a , тем более сильное убывание.

Возрастание, убывание

Показательная функция, при является строго монотонной, поэтому экстремумов не имеет. Основные ее свойства представлены в таблице.

y = a x , a > 1 y = a x , 0 < a < 1
Область определения - ∞ < x < + ∞ - ∞ < x < + ∞
Область значений 0 < y < + ∞ 0 < y < + ∞
Монотонность монотонно возрастает монотонно убывает
Нули, y = 0 нет нет
Точки пересечения с осью ординат, x = 0 y = 1 y = 1
+ ∞ 0
0 + ∞

Обратная функция

Обратной для показательной функции с основанием степени a является логарифм по основанию a .

Если , то
.
Если , то
.

Дифференцирование показательной функции

Для дифференцирования показательной функции, ее основание нужно привести к числу e , применить таблицу производных и правило дифференцирования сложной функции.

Для этого нужно использовать свойство логарифмов
и формулу из таблицы производных :
.

Пусть задана показательная функция:
.
Приводим ее к основанию e :

Применим правило дифференцирования сложной функции . Для этого вводим переменную

Тогда

Из таблице производных имеем (заменим переменную x на z ):
.
Поскольку - это постоянная, то производная z по x равна
.
По правилу дифференцирования сложной функции:
.

Производная показательной функции

.
Производная n-го порядка:
.
Вывод формул > > >

Пример дифференцирования показательной функции

Найти производную функции
y = 3 5 x

Решение

Выразим основание показательной функции через число e .
3 = e ln 3
Тогда
.
Вводим переменную
.
Тогда

Из таблицы производных находим:
.
Поскольку 5ln 3 - это постоянная, то производная z по x равна:
.
По правилу дифференцирования сложной функции имеем:
.

Ответ

Интеграл

Выражения через комплексные числа

Рассмотрим функцию комплексного числа z :
f(z) = a z
где z = x + iy ; i 2 = - 1 .
Выразим комплексную постоянную a через модуль r и аргумент φ :
a = r e i φ
Тогда


.
Аргумент φ определен не однозначно. В общем виде
φ = φ 0 + 2 πn ,
где n - целое. Поэтому функция f(z) также не однозначна. Часто рассматривают ее главное значение
.

Разложение в ряд


.

Использованная литература:
И.Н. Бронштейн, К.А. Семендяев, Справочник по математике для инженеров и учащихся втузов, «Лань», 2009.



Статьи по теме