Ядра экстрапирамидной системы. Экстрапирамидная система. Мозжечок. Анатомо-физиологические особенности базальных ганглиев

Экстрапирамидная система

Экстрапирамидная система (лат.: extra - вне, снаружи, в стороне + pyramis, греч.: πϋραμίς - пирамида) - совокупность структур (образований) головного мозга, участвующих в управлении движениями, поддержании мышечного тонуса и позы, минуя кортикоспинальную (пирамидную) систему. Структура расположена в больших полушариях и стволе головного мозга.

Экстрапирамидные проводящие пути образованы нисходящими проекционными нервными волокнами, neurofibrae projectiones descendens, по происхождению не относящимися к гигантским пирамидным клеткам (клеткам Беца) коры мозга. Эти нервные волокна обеспечивают связи мотонейронов подкорковых структур (мозжечок, базальные ядра, ствол мозга) головного мозга со всеми отделами нервной системы , расположенными дистальнее.

Экстрапирамидная система состоит из следующих структур головного мозга:

Экстрапирамидная система - эволюционно более древняя система моторного контроля по сравнению с пирамидной системой. Имеет особое значение в построении и контроле движений, не требующих активации внимания. Является функционально более простым регулятором по сравнению с регуляторами пирамидной системы.

Экстрапирамидная система осуществляет непроизвольную регуляции и координацию движений, регуляцию мышечного тонуса, поддержание позы, организацию двигательных проявлений эмоций (смех, плач) . Обеспечивает плавность движений, устанавливает исходную позу для их выполнения.

При поражении экстрапирамидной системы нарушаются двигательные функции (например, могут возникнуть гиперкинезы, паркинсонизм), снижается мышечный тонус.

Экстрапирамидная система (systema extrapyramidale) объединяет двигательные центры коры головного мозга, его ядра и проводящие пути, которые не проходят через пирамиды продолговатого мозга ; осуществляет регуляцию непроизвольных компонентов моторики (мышечного тонуса, координации движений, позы).

От пирамидной системы экстрапирамидная система отличается локализацией ядер в подкорковой области полушарий и стволе головного мозга и многозвенностью проводящих путей. Первичными центрами системы являются хвостатое и чечевицеобразное ядра полосатого тела, субталамическое ядро, красное ядро и черное вещество среднего мозга. Кроме того, в экстрапирамидная система входят в качестве интеграционных центры коры большого мозга , ядра таламуса, мозжечок, преддверные и оливные ядра, ретикулярная формация. Частью экстрапирамидной системы является стриопаллидарная система, которая объединяет ядра полосатого тела и их афферентные и эфферентные пути. В стриопаллидарной системе выделяют филогенетически новую часть - стриатум, к которой относятся хвостатое ядро и скорлупа чечевицеобразного ядра, и филогенетически старую часть - паллидум (бледный шар). Стриатум и паллидум различаются по своей нейроархитектонике, связям и функциям.

Стриатум получает волокна из коры большого мозга, центрального ядра таламуса и черного вещества. Эфферентные волокна из стриатума направляются в паллидум, а также в черное вещество. Из паллидума волокна идут в таламус, гипоталамус, к субталамическому ядру и в ствол головного мозга. Последние образуют чечевицеобразную петлю и частично оканчиваются в ретикулярной формации, частично идут к красному ядру преддверным и оливным ядрам. Следующее звени экстрапирамидных путей составляют ретикулярно-спинномозговой, красноядерно-спинномозговой, преддверно-спинномозговой и оливоспинномозговой пути, оканчивающиеся в передних столбах и промежуточном сером веществе спинного мозга. Мозжечок включается в экстрапирамидную систему посредством путей, соединяющих его с таламусом, красным ядром и оливными ядрами.

Функционально экстрапирамидная система неотделима от пирамидной системы. Она обеспечивает упорядоченный ход произвольных движений, регулируемых пирамидной системой; регулирует врожденные и приобретенные автоматические двигательные акты, обеспечивает установку мышечного тонуса и поддержание равновесия тела; регулирует сопутствующие движения (например движения рук при ходьбе) и выразительные движения (мимика).

Методы исследования

Выявлению патологии помогают различные методы исследования головного мозга: электроэнцефалография, реоэнцефалография, пневмоэнцефалография, ангиография, радионуклидная сцинтиграфия, компьютерная рентгеновская и позитронно-эмиссионная томография; регистрация состояния нервно-мышечной системы (электромиография, миотонометрия. греморография, кимография гиперкинезов в покое и при раздражении, кинорегистрация движений ускоренной съемкой с замедленной проекцией и др.), исследование содержания катехоламинов и других нейромедиаторов в крови и цереброспинальной жидкости.

Патология

Патологические синдромы возникают при поражении различных ядер и связей экстрапирамидной системы. Нарушаются двигательные функции, тонус мышц, поза, координация, эмоциональные проявления, вегетативно-сосудистые реакции. Нарушения могут проявляться как избытком движений и поз, появлением гиперкинезов, чрезмерной жестикуляцией, синкинезиями, так и дефицитом движений - акинезией.

У человека существует тесная филогенетическая связь между моторикой и мышечным тонусом, поэтому при патологии экстрапирамидной системы встречаются сочетанные нарушения моторики и тонуса мышц. Например «паллидарная ригидность», возникающая при поражении бледного шара и его связей (паркинсонизм, атеросклеротическая мышечная ригидность Ферстера), характеризуется, с одной стороны, усилением постуральных рефлексов и поз, появлением пластического мышечного тонуса, ступенчатостью мышечного сокращения, с другой - выпадением экстрапирамидных кинезов, обездвиженностью. При стриарных гиперкинетико-гипотонических синдромах гиперкинезы, вычурные позы, гримасы, жестикуляция, нарушения речи, письма, походки появляются на фоне мышечной гипотонии или дистонии (симптом Гордона).

Поражения экстрапирамидной системы возникают при различных заболеваниях головного мозга: энцефалитах (эпидемический, ревматический и др.), сосудистых заболеваниях черепно-мозговой травме, интоксикациях (угарный газ, свинец, ртуть и пр.), опухолях и др. Длительное применение нейролептических средств с изменением толерантности к лекарственному препарату может привести к повреждению экстрапирамидной системы. Экстрапирамидные синдромы могут быть следствием и более редких причин, например тяжелых форм аллергии, гипервентиляции, асфиксии, полиглобулии и др. Возможно развитие таких синдромов после стереотаксической операции. Известны заболевания, связанные с врожденной недостаточностью базальных ядер (миоклонус-эпилепсия, атетоз двойной и др.).

В патогенезе заболеваний экстрапирамидной системы большое значение придается нейрохимическим механизмам. В подкорковых областях головного мозга функционируют специализированные медиаторы-нейротрансмиттеры, действие которых нарушается в условиях патологии. Например, двигательные и эмоциональные нарушения при паркинсонизме обусловлены снижением активности двух систем дофаминергических нейронов: в нигростриарном пути (снижение двигательной активности) и в мезолимбическом пути (снижение эмоциональных реакций). При ослаблении активности дофамина в полосатом теле (нарушение «входа» дофаминовой системы на рецепторы холинергических нейронов) возникает избыток ацетилхолина, что ведет к появлению дрожания.

Одной из клинических форм экстрапирамидных нарушений является дрожание (тремор), при котором установлена заинтересованность системы красное ядро - ретикулярная формация зубчатое ядро мозжечка. Дрожание вариабельно по амплитуде, частоте, локализации (пальцы, шея, голова, гемитремор и др.). Статическое дрожание пальцев рук (тремор покоя) в виде скатывания пилюль, счета монет является важным признаком болезни Паркинсона (дрожательного паралича). В сочетании с ригидностью мышц, гипомимией образует дрожательно-ригидные формы паркинсонизма. Статодинамическое дрожание характерно для эссенциального тремора (тремор Минора), гепатоцеребральной дистрофии. Мозжечковый тип дрожания (динамическое, интенционное дрожание) характерен для рассеянного склероза , энцефалита. Нарушение моторных реакций при поражении покрышки мозгового ствола. ретикулярной формации, черной субстанции ведет к появлению фиксированных постуральных поз, усилению рефлексов положения флексорного или экстензорного вида. К постуральным локализованным позам типа «торсио» относится спастическая кривошея. Синдром развивается после энцефалита, интоксикаций, обусловлен высвобождением шейно-тонических и лабиринтных рефлексов на уровне оральных отделов мозгового ствола. Может сочетаться с другими экстрапирамидными гиперкинезами (дрожание, торсионная дистония и др.), что отличает кривошею экстрапирамидной природы от рефлекторной кривошеи (при добавочных ребрах, шейном радикулите, остеохондроз).

Короткие быстрые спазмы мышцы или ее части, напоминающие крупные фасцикуляции, рассматриваются как парамиоклонус Фридрейха. Мышечные сокращения, охватывающие мышцы-синергисты с перемещением частей тела и конечностей, относятся к миоклоническим гиперкинезам. Чаще встречается рубродентооливарная миоклония, развивающаяся после перенесенных энцефалитов, ревматизма, токсоплазмоза и др. Наследственная миоклония может сочетаться с эпилепсией (миоклонус-эпилепсия Унферрихта - Лундборга) или с мозжечковой асинергией (мозжечковая асинергия Ханта). Миоритмию, описанную Маринеску (G. Mannescu), которая локализуется главным образом в мышцах мягкого неба, слуховой трубы, относят к нижнеоливарному типу.

При поражении экстрапирамидной системы могут развиваться тики мышц лица, брюшной стенки, диафрагмы, голосовых складок (заикание). Генерализованный тик в сочетании с речевыми тиками у детей носит название болезни Туретта; существует тик диафрагмы, вызывающий икоту. Гиперкинезы с респираторными пароксизмами возникают в результате сокращения мышц диафрагмы, брюшной стенки и проявляются приступами быстрых судорожных выдохов, сопровождающихся криками, покашливанием. Во время пароксизмального респираторного гиперкинеза учащается пульс, наблюдаются вазомоторные расстройства.

Клиническую группу таламостриарных нарушений составляют различные формы хореи (малая хорея, хорея Гентингтона, атеросклеротическая хорея и др.). Судороги при хорее разбросанные, быстрые, мощные, появляются во всех частях тела и конечностях, сопровождаются гримасничаньем. Малая хорея является симптомом ревматического энцефалита. Гентингтона хорея - наследственное хроническое заболевание, протекающее с нарастающим слабоумием. После острых нарушений мозгового кровообращения в области внутренней капсулы и стриарных тел может появиться гемихорея. К вариантам хореических гиперкинезов относят гемибаллизм, характеризующийся бросковыми вращательными движениями в руке или ноге одной стороны тела в сочетании с гипотонией мышц. Развивается при поражении субталамического ядра Люиса и его связи с бледным шаром.

Патологические движения в дистальных отделах конечностей, распространяющиеся на мышцы лица и шеи, можно наблюдать при атетозе. Они изменчивы, совершаются как бы с преодолением препятствия, несинхронны, создают впечатление непрерывного волнообразного спазма, напоминающего движения щупальцев спрута. Мышечный тонус изменен по дистоническому типу. Двойной атетоз как разновидность детских форм атетоза связан с симметричной атрофией базальных ядер головного мозга, проявляется своеобразным гиперкинезом мышц лица и симметричным атетозом и кистях и стопах. Атетозный гиперкинез может сочетаться с детским церебральным параличом, быть следствием энцефалитов, сосудистых заболеваний головного мозга и др. Часто образует смешанные формы: хореатетоз, атетоз с таламической кистью и др. Экстрапирамидным гиперкинезом является торсионный спазм, для которого характерны распространенные спазмы больших мышечных групп. Возникают судорожно-тонические позы тела в виде опистотонуса, «торсио дуги». Гиперкинез при торсионном спазме напоминает кольцевые движения удава. Встречается торсионная дистония, сочетающаяся с гемибаллизмом, хореей, дрожанием и др.

Тонико-клонические судороги мышц лица отмечаются при лицевом параспазме. Ограниченный параспазм локализуется в верхней части лица (смыкание век), при распространенном спазме сокращаются все мимические мышцы, а также мышцы шеи и конечностей. Параспазму, как и многим экстрапирамидным синдромам, свойственны произвольные установки и позы, которые используются больными для снижения или прекращения гиперкинеза. При поражении экстрапирамидной системы нередко встречаются тонические спазмы взора, блефароспазм, неудержимые приступы смеха, плача, орально-мандибулярные дискинезии.

Сложные пароксизмальные гиперкинезы возникают во время насильственного плача. Они протекают циклами (по 2-3 мин) в виде махания рукой перед лицом, ритмических потираний области сердца, лица. Своеобразным экстрапирамидным синдромом является подкорковая эпилепсия.

Лечение экстрапирамидных синдромов затруднено. Используются этиотропные, симптоматические, общеукрепляющие лекарственные средства . В ряде случаев показаны иглотерапия, аутотренинг. экстрапирамидных синдромов проводится с помощью стереотаксических операций на подкорковых узлах.

    - (от экстра... и греч. pyramis пирамида), совокупность структур мозга, включающая значит, часть коры головного мозга, базальные ганглии, ретикулярную формацию ствола, красное ядро, ядра вестибулярного комплекса и мозжечок; участвует в координации… … Биологический энциклопедический словарь

    - (в физиологии) совокупность структур, расположенных в больших полушариях и стволе головного мозга, участвующих в управлении движениями, регуляции мышечного тонуса, эмоциональных проявлениях (смех, плач) … Большой Энциклопедический словарь

    - (физиол.), совокупность структур, расположенных в больших полушариях и стволе головного мозга и участвующих в управлении движениями, регуляции мышечного тонуса, эмоциональных проявлениях (смех, плач). * * * ЭКСТРАПИРАМИДНАЯ СИСТЕМА… … Энциклопедический словарь

    - (от Экстра... и греч. pyramís пирамида) совокупность структур мозга, расположенных в больших полушариях и стволе головного мозга и участвующих в центр, управлении движениями, минуя кортикоспинальную, или пирамидную систему (См. Пирамидная … Большая советская энциклопедия

    - (физиол.), совокупность структур, расположенных в больших полушариях и стволе головного мозга и участвующих в управлении движениями, регуляции мышечного тонуса, эмоц. проявлениях (смех, плач) … Естествознание. Энциклопедический словарь

    ЭКСТРАПИРАМИДНАЯ СИСТЕМА - [см. экстра греч. pyramis пирамида] совокупность структур мозга, включающая часть коры головного мозга, базальные ганглии, ретикулярную формацию ствола мозга, красное ядро, ядра вестибулярного комплекса, мозжечок и др., а также двигательные… … Психомоторика: cловарь-справочник

    Система нервных центров и двигательных путей, связывающая кору головного мозга, базальные ганглии, красные ядра, таламус, мозжечок, ретикулярную формацию и двигательные ядра черепных и спинномозговых нервов в сложную цепь, в состав которой,… … Медицинские термины

    СИСТЕМА ЭКСТРАПИРАМИДНАЯ - (exirapyramidal system) система нервных центров и двигательных путей, связывающая кору головного мозга, базальные ганглии, красные ядра, таламус, мозжечок, ретикулярную формацию и двигательные ядра черепных и спинномозговых нервов в сложную цепь … Толковый словарь по медицине

    Система - (организма). Совокупность органов и тканей, взаимосвязанных анатомически и функционально, отличающихся структурной общностью и эмбриогенетически. С. афферентная. Часть нервной системы, преобразующая энергию поступающих раздражений в нервные… … Толковый словарь психиатрических терминов

1) Красноядерноспинальный тракт. Первые нейроны располагаются в красном ядре среднего мозга. Их аксоны при выходе из покрышки среднего мозга совершают перекрест, после которого транзитом проходят через ретикулярную формацию моста, продолговатого мозга, спускаются в боковые канатики спинного мозга, доходят до своего сегмента и заканчиваются в двигательных ядрах передних рогов.

Здесь находятся тела вторых нейронов. Их аксоны в составе передних корешков выходят из спинного мозга и далее в составе спинномозговых нервов достигают поперечнополосатой мускулатуры.

2) Оливоспинальный тракт. Первые нейроны располагаются в нижней оливе продолговатого мозга. Их аксоны, не перекрещиваясь, идут в составе передних канатиков спинного мозга до двигательных нейронов передних рогов. Здесь располагаются тела вторых нейронов, чьи аксоны достигают скелетных мышц.

3) Вестибулоспинальный и ретикулоспинальный тракты. Первые нейроны располагаются в вестибулярных ядрах и ядрах ретикулярной формации, соответственно. Их аксоны, не перекрещиваясь, идут в составе передних канатиков спинного мозга до двигательных нейронов передних рогов. Здесь располагаются тела вторых нейронов, чьи аксоны достигают скелетных мышц.

4) Тектоспинальный тракт. Первые нейроны располагаются в четверохолмии среднего мозга. Их аксоны совершают перекрест, транзитом идут в передние канатики спинного мозга, и заканчиваются на двигательных нейронах передних рогов. Здесь располагаются тела вторых нейронов, чьи аксоны достигают скелетных мышц.

Функции нисходящих путей. Пирамидные и экстрапирамидные пути совместно обеспечивают регуляцию целенаправленных двигательных реакций. При этом функции пирамидной системы модулируются деятельностью экстрапирамидной системы.

Схема взаимодействия этих функциональных систем ЦНС выглядит следующим образом. При выполнении целенаправленного движения общее направление движения обеспечивается регуляторными механизмами экстрапирамидной системы. Она определяет пластический тонус мышц и обеспечивает сокращение мышечных групп, участвующих в движении. Завершение целенаправленного движения (например, захват предмета пальцами) осуществляется под контролем пирамидной системы и ее нисходящих путей. Нарушение взаимодействия пирамидной и экстрапирамидной систем при патологии ЦНС приводит к поражению двигательных реакций организма.

Экстрапирамидные пути осуществляют сложные безусловнорефлекторные реакции организма на раздражение. Например, тектоспинальный тракт обеспечивает ориентировочный рефлекс на неожиданные зрительные и слуховые раздражители; ретикулоспинальный тракт тормозит двигательные реакции спинного мозга.

Боковые желудочки являются полостью конечного мозга. Они залегают симметрично по обеим сторонам от средней линии ниже уровня мозолистого тела.

В каждом желудочке выделяют центральную часть , передний, задний и нижние рога.

Центральная часть соответствует теменной доле полушария и представляет собой горизонтально расположенное щелевидное пространство.

Передний рог бокового желудочка располагается в лобной доле, задний – в затылочной, нижний – в височной доле.

В центральную часть и нижний рог желудочка вдается сосудистое сплетение.

Сообщения желудочков головного мозга

1. Боковые желудочки через межжелудочковые отверстия сообщаются с III желудочком.

2. III желудочек, кроме вышеописанных боковых, сообщается через водопровод мозга с IV желудочком.

3. IV желудочек, кроме третьего, сообщается благодаря боковым и медиальному отверстиям с подпаутинным пространством головного мозга и с центральным каналом спинного мозга. Заращение этих отверстий ведет к накоплению жидкости в подпаутинном пространстве – водянке головного мозга.

Желудочки головного мозга. Боковые желудочки (первый и второй) расположены в самой середине каждого полушария; третий желудочек занимает центральную часть большого мозга. Он сообщается с боковыми желудочками (через межжелудочковые, или монроевы, отверстия) и с четвертым желудочком, находящимся в стволе.

Оболочки головного мозга

Головной мозг, как и спинной, окружен тремя соединительнотканными оболочками: наружной твердой, средней паутинной и внутренней сосудистой.

Твердая оболочка . Ее наружная поверхность прилежит непосредственно к костям черепа, для которых является внутренней надкостницей. С костями свода черепа твердая оболочка связана слабо и легко отделяется, а с костями основания черепа – прочно.

По определенным линиям твердая оболочка расщепляется на два листка, образуя синусы (пазухи), выстланные эндотелием. В синусы впадают вены, по которым происходит отток крови из мозга. Основной отток крови из синусов идет через внутренние яремные вены. Синусы отличаются от обычных вен тем, что из-за наличия жестких стенок не спадаются и не изменяют свой просвет при изменениях внутричерепного давления.

Со своей внутренней стороны твердая оболочка образует отростки, проходящие в виде пластинок в щели между отдельными частями головного мозга и отделяющие эти части друг от друга.

Паутинная оболочка головного мозга имеет вид тонкой прозрачной, но плотной пластинки, бедной сосудами и нервами. От твердой оболочки она отделяется субдуральным пространством, а от мягкой – подпаутинным пространством. Подпаутинное пространство заполнено спинномозговой жидкостью. Паутинная оболочка соединяется с мягкой оболочкой с помощью соединитльнотканных перекладин.

Подпаутинное пространство не представляет общей полости одинаковой глубины, а состоит из множества сообщающихся между собой щелей. Там где подпаутинная оболочка перекидывается через глубокие борозды, образуются так называемые подпаутинные цистерны.

Все цистерны сообщаются друг с другом, а в области большого затылочного отверстия подпаутинное пространство головного мозга сообщается с подпаутинным пространством спинного мозга.

От наружной поверхности паутинной оболочки отходят специфические выросты, вдающиеся в венозные синусы твердой оболочки головного мозга. Это так называемые паутинные грануляции, через которые происходит отток спинномозговой жидкости из подпаутинного пространства в венозные синусы.

Мягкая (сосудистая) оболочка головного мозга плотно прилежит к веществу мозга. Она богата нервными и кровеносными сосудами и имеет большое значение в питании мозга. В определенных местах мягкая оболочка проникает в желудочки мозга и формирует складки, содержащие большое количество кровеносных сосудов . Это сосудистые сплетения , продуцирующие из крови спинномозговую жидкость.

Эмбриогенез спинного мозга

Нервная система плода начинает развиваться на ранних этапах эмбриональной жизни, продолжая развитие и в первые годы после рождения. Из эктодермы в заднем отделе зародыша образуется нервная пластинка, из которой впоследствии формируется нервный желобок, а затем - нервная трубка.

Из нее развивается спинной мозг, который соответственно сегментарному строению туловища делится на связанные между собою сегменты. Спинной мозг после 4 месяцев внутриутробного развития начинает отставать в росте от позвоночника. К рождению спинной мозг заканчивается на уровне третьего поясничного позвонка. У взрослого человека нижняя граница спинного мозга соответствует уровню 1-2 поясничных позвонков.

Спинной мозг у новорожденного имеет морфологически более зрелое строение, чем головной мозг. Его рост продолжается до 20 лет.

Эмбриогенез головного мозга

Головной мозг развивается из головного конца нервной трубки. Его преобразования тесно связаны с развитием органов чувств.

В эмбриогенезе головного мозга выделяют несколько стадий. На третьей неделе развития в головном отделе нервной трубки образуются три первичных мозговых пузыря (передний, средний и задний), из которых развиваются главные отделы головного мозга: конечный, средний и ромбовидный. В последующем передний и задний мозговые пузыри разделяются на два отдела, в результате чего образуется пять мозговых пузырей: конечный, промежуточный, средний, задний и продолговатый. Из конечного пузыря развиваются полушария головного мозга и подкорковые ядра; из промежуточного - промежуточный мозг (зрительные бугры, подбугорье, гипоталамус); из среднего - средний мозг (четверохолмие, ножки мозга); из заднего - мост и мозжечок, а из продолговатого - продолговатый мозг. К 3-му месяцу внутриутробного развития определяются основные части центральной нервной системы: большие полушария, ствол, мозговые желудочки , спинной мозг. К 5-му месяцу дифференцируются основные борозды коры больших полушарий, однако, кора остается еще недостаточно развитой.

Борозды и извилины головного мозга возникают благодаря неравномерному росту самого мозга. При этом выделяют первичные, вторичные и третичные борозды. Первичные борозды отличаются абсолютным постоянством. К ним относят, например, центральную, латеральную (боковую) и теменно-затылочную извилины. Латеральная борозда появляется к 4 месяцу внутриутробного развития, а теменно-затылочная и центральная – на 6-ом месяце.

Вторичные борозды появляются позднее (на 7-8 месяце внутриутробного развития) и характеризуются меньшим постоянством. Третичные борозды появляются не только в пренатальном, но и в постнатальном периоде развития (в течение 1-го месяца жизни ребенка). Это многочисленные мелкие борозды, непостоянные по времени появления, форме, числу и не имеющие названий.

Количество полушарных извилин, их форма, топогра­фическое положение претерпевают определенные изменения по мере роста ребенка. Наибольшие изменения происходят в течение первых 5-6 лет, и лишь к 15-16 годам становятся похожими на мозговые структуры взрослого человека.

Головной мозг новорожденного имеет относительно большую величину, масса его в среднем составляет 1/8 массы тела. К моменту рождения вес мозга составляет 340 г у мальчиков и 330 г у девочек. К 9-месячному возрасту, первоначальная масса мозга удваивается и к концу первого года жизни составляет 1/11-1/12 массы тела. Наряду с ростом головного мозга меняются и ïðîïîðöèè черепа. Увеличение массы мозга происходит особенно интенсивно до 7-ми летнего возраста. Мозг достигает максимальной массы к 20-30 годам. У взрослого мужчины масса мозга – 1375 г, а у женщины – 1245 г. Причем масса мозга от периода рождения до взрослого возраста увеличивается в среднем в 4 раза, тогда как масса тела – в 20 раз.

Новорожденного мало дифференцирована; корковые клетки и двигательные проводящие пути недоразвиты; вещество полушарий головного мозга слабо дифференцировано на белое и . После рождения интенсивно протекают процессы миелинизации нервных волокон в различных отделах головного мозга. К 9-ти месяцам миелинизация в большинстве волокон коры больших полушарий достигает хорошего развития, за исключением коротких ассоциативных волокон в лобной доле. К этому возрасту становятся более отчетливыми первые три слоя коры.

Миелинизация волокон, расположение слоев коры и дифференциация нервных клеток в основном завершается к 3 годам.

В младшем школьном возрасте, а также в период полового созревания продолжающееся развитие головного мозга характеризуется увеличением количества ассоциативных волокон и образованием новых нервных связей.

Функциональные особенности развития коры . У новорожденного большие полушария головного мозга не обладают регулирующим влиянием на нижележащие отделы ЦНС. Кора не регулирует движения, поэтому у новорожденного они имеют обобщенный характер и не имеют целенаправленности, за исключением движений, обеспечивающих прием пищи. Считается, что на ранних этапах периода новорожденности функции ребенка регулируются в основном промежуточным мозгом. Рефлекторные дуги безусловных рефлексов проходят через зрительные бугры и полосатое тело.

Развитие периферической нервной системы

Периферическая нервная система новорожденного недостаточно миелинизирована. Миелинизация проходит неравномерно. Так черепномозговые нервы миелинизируются в течение 3-4 мес., процесс заканчивается к 1 году 3 мес. Миелинизация спинномозговых нервов продолжается до 2-3 лет.

Вегетативная нервная система функционирует у ребенка с момента рождения. После рождения отмечается лишь образование отдельных узлов и мощных сплетений симпатической нервной системы.

Рассмотренные данные свидетельствуют о том, что уже на самых ранних стадиях эмбриогенеза развития нервной системы осуществляется по принципу системогенеза с развитием в первую очередь тех отделов, которые обеспечивают жизненно необходимые врожденные реакции, создающие первичную адаптацию ребенка после рождения (пищевые, дыхательные, выделительные защитные).

Изучение развивающегося мозга, особенно в первый год жизни, обнаруживает нечто сходное: появление новых форм реагирования сопровождается угасанием, редукцией первичных автоматизмов. Но при этом оба эти процесса должны быть сбалансированы. Преждевременное угасание первичных автоматизмов лишает функции прочного фундамента, так как при развитии мозга принцип преемственности обязателен. В то же время слишком поздняя редукция устоявшихся форм реагирования мешает образованию новых, более сложных реакций.

Сбалансированность процессов редукции и обновления наиболее выступает в двигательном развитии детей первого года жизни. Так, при рождении у ребенка имеются первичные позотонические автоматизмы, влияющие на мышечный тонус в зависимости от положения головы в пространстве. К концу второго - к началу третьего месяца жизни эти автоматизмы должны угасать, уступая место новым формам регуляции мышечного тонуса - способности ребенка удерживать голову. Если этого не происходит, данные автоматизмы следует рассматривать как аномальные, ибо они препятствуют удерживанию головы. Формируется патологическая связь: невозможность удерживать голову нарушает развитие зрительного восприятия и вестибулярного аппарата; из-за неразвитости вестибулярного аппарата не вырабатывается способность к распределению тонуса мышц, обеспечивающему акт сидения. И как итог - искажается вся схема двигательного развития.

Таким образом, наряду с гетерохронностью развития отдельных функциональных систем и их звеньев необходима и определенная синхронность их взаимодействия. Для каждого возрастного периода отдельные системы должны иметь определенную зрелость, иначе не произойдет нормального слияния систем в единый ансамбль.

Вегетативная нервная система

Вегетативную нервную систему подразделяют на симпатическую и парасимпатическую. Работа этих двух систем-антагонистов поддерживает в организме стабильность внутренней среды перед лицом вечно изменяющегося мира.

Главное различие между симпатической и парасимпатической системами заключается в том, что первая мобилизует организм для действия (катаболизм), а другая - восстанавливает запасы энергии в организме (анаболизм).

Основная функция симпатической системы - это мобилизация всего организма при чрезвычайных, экстремальных обстоятельствах. Такая мобилизация связана с рядом сложных реакций, начиная с расщепления гликогена в печени (образующаяся при этом глюкоза служит добавочным источником энергии) и кончая изменениями в циркуляции крови. Каждую из этих реакций, осуществляемых симпатической нервной системой, легко понять как механизм приспособления к «аварийным» ситуациям, выработанным в ходе эволюции. Обеспечение доступа к запасам энергии дает организму максимум физических возможностей в непредвиденных ситуациях. Уменьшение кровотока около поверхности тела снижает вероятность обильного кровотечения при повреждении кожи, тогда как усиленная подача крови к глубже лежащим мышцам позволяет развить большее физическое усилие. Кеннон назвал весь этот комплекс изменений «реакцией борьбы и бегства». Его теоретические соображения о роли этой реакции явились существенным стимулом для развития психофизиологии и современных представлений об «общей активации» организма.

Следующее по важности различие - то, что симпатическая система имеет тенденцию действовать быстро и как единое целое, тогда как парасимпатическая активация более кратковременна и носит локальный характер. Действие симпатической системы обычно проявляется диффузно (охватывает весь организм) и поддерживается относительно долго. С другой стороны, действие парасимпатической системы , способствующее сохранению и поддержанию основных ресурсов организма, локально и относительно кратковременно.

Эффекты симпатической и парасимпатической систем на органы и системы организма противоположны друг другу. В то время как симпатическая нервная система ускоряет сокращения сердца, парасимпатическая их замедляет, она усиливает также приток крови к желудочно-кишечному тракту и стимулирует превращение глюкозы в гликоген печени. Большинство, но не все внутренние органы получают иннервацию от обеих систем.

Поскольку обе они работают согласованно, трудно бывает определить, связано ли данное изменение функции с активностью той или другой из них. Например, замедление ритма сердца может указывать и на усиленную активность парасимпатической системы, и на ослабление действия ее антагониста.

Последнее различие в функционировании обеих систем связано с особенностями их структурной организации. В соматической нервной системе каждый нейрон, тело которого находится в ЦНС, имеет длинный отросток – аксон, проводящий нервные импульсы к органу-мишени. В произвольной мускулатуре такой аксон образует синапс в области двигательной пластинки мышечного волокна. Соматическая нервная система, таким образом, имеет «однонейронный путь». В вегетативной же системе путь к органу-исполнителю двухнейронный. Место соединения между этими двумя нейронами находится в вегетативном ганглии.

Симпатические волокна выходят из средней части спинного мозга - из грудного и поясничного отделов , поэтому симпатическую систему иногда называют тораколюмбальной. Ее аксоны сходятся к группе симпатических ганглиев, расположенных с обеих сторон спинного мозга. В этих ганглиях с плотно расположенными нейронами существуют большие возможности для электрических «переключений», и импульс, пришедший из любого участка симпатической системы, может вызвать активацию всей этой системы. Парасимпатические волокна образуют синапсы недалеко от иннервируемого органа, они выходят из спинного мозга выше или ниже места выхода симпатических волокон - из черепного и кресцового отделов. В связи с этим парасимпатическую нервную систему еще называют краниосакральной. Ее ганглии расположены далеко друг от друга, и поэтому нервные импульсы оказываются более специфическими. Кроме этого симпатическая нервная система иннервирует надпочечники, которые при стимуляции выделяют адреналин и норадреналин. Норадреналин гормонального происхождения попадает в симпатические синапсы и усиливает их действие.

Для распада этого гормона требуется некоторое время, поэтому для прекращения активности симпатической системы также требуется некоторое время. Для парасимпатической системы существует другой медиатор - ацетилхолин. В синапсах этой системы ацетилхолин быстро инактивируется холинэстеразой, в связи с этим парасимпатические эффекты четко ограничены не только в пространстве, но и во времени. Важным исключением из этого правила являются симпатические волокна, иннервирующие потовые железы - они активируются ацетилхолином. Таким образом, различия между катаболическим действием симпатической системы и анаболическим действием парасимпатической системы обусловлены особенностями их анатомического строения.

Нервные механизмы регуляции вегетативных функций имеют иерархическую структуру. Первым уровнем этой иерархии являются внутриорганные периферические рефлексы, замыкающиеся в интрамуральных ганглиях вегетативной нервной системы, средним уровнем являются нервные центры ствола мозга, высшим уровнем - кора больших полушарий. Она обеспечивает координацию вегетативных и соматических функций в сложных поведенческих реакциях организма, возникновение которых обусловлено индивидуальным опытом.

Установлено, что в продолговатом мозге расположены центры, тормозящие деятельность сердца, возбуждающие слезоотделение и секрецию слюнных и желудочных желез, поджелудочной железы, вызывающие выделение желчи из желчного пузыря и желчного протока, возбуждающие сокращение желудка и тонкого кишечника. Здесь же, в ретикулярной формации находится сосудодвигательный центр, координирующий и интегрирующий деятельность нейронов симпатического отдела нервной системы, расположенных в тораколюмбальных сегментах спинного мозга и посылающих на периферию сосудосуживающие импульсы.

Характерной особенностью сосудодвигательного центра продолговатого мозга и нейронов блуждающего нерва, тормозящих сердечную деятельность, является то, что они находятся постоянно в состоянии автоматической активности (тонуса), в результате чего артерии и артериолы всегда несколько сужены, а сердечная деятельность замедлена.

При участии нейронов ядер блуждающих нервов осуществляется различные рефлексы на сердце, в том числе рефлекс Гольца, глазосердечный (рефлекс Ашнера), дыхательно-сосудистый и др.

Многие рефлекторные реакции сердца осуществляются сопряженно с изменениями сосудистого тонуса. Это обусловлено связями, существующими между нейронами, регулирующими деятельность сердца и сосудистый тонус.

Импульсы к спинномозговым нейронам симпатической системы, иннервирующим сосуды, передаются от сосудовигательного центра по ретикулоспинальным путям. Сосудорасширяющие рефлексы сосудодвигательного центра имеют, как правило, регионарный характер, сосудосуживающие - охватывают обширные области тела.

В отличие от дыхательного центра, центры регуляции сердечной деятельности и сосудистого тонуса, хотя и находятся под влиянием коры полушарий мозга, обычно не могут быть произвольно возбуждены или заторможены (для этого требуется специальная тренировка).

Рефлекторные центры продолговатого мозга, регулирующие деятельность пищеварительных органов, осуществляют свое влияние через парасимпатические нервные волокна, приходящие к слюнным железам в составе языкоглоточного и лицевого нервов, а к желудку, поджелудочной железе, тонкому кишечнику, желчному пузырю и желчным протокам - в составе блуждающего нерва.

В среднем мозге , в передних буграх четверохолмия, находятся нервные центры зрачкового рефлекса и аккомодации глаза.

Деятельность вегетативных центров, расположенных в спинном, продолговатом и среднем мозге, в свою очередь регулируется высшими вегетативными центрами гипоталамус а.

Особенность ответных реакций, возникающих при раздражении разных участков гипоталамуса, заключается в том, что в них участвуют многие органы тела. Эти реакции являются комплексными и интегрированными. Ядра гипоталамуса принимают участие во многих общих, в том числе поведенческих, реакциях. Так, гипоталамус участвует в половых и агрессивно-оборонительных реакциях. Точечное раздражение его вентромедиального ядра вызывает у кошки резко выраженный агрессивный эффект - так называемую реакцию мнимой ярости.

Деятельность гипоталамуса в свою очередь контролируется высшими отделами ЦНС - подкорковыми ядрами, мозжечком и корой больших полушарий, с которыми гипоталамус связан как прямыми нервными путями, так и путями, проходящими в составе ретикулярной формации мозгового ствола.

Оказывая активирующее и тормозящее влияние на различные отделы ЦНС, ретикулярная формация повышает активность вегетативных нервных центров. Она оказывает на них тонизирующее влияние. Поэтому симпатический отдел может рассматриваться в функциональном единстве с ретикулярной формацией.

Экспериментально показано, что введение адреналина повышает тонус ретикулярной формации, в результате чего усиливается ее активирующее влияние на большие полушария.

На вегетативную нервную систему существенное влияние оказывает мозжечок . При его удалении возникает угнетение моторной, в частности периодической, деятельности пищварительного тракта и секреторной функции желез желудка и кишечника.

Как известно, подкорковые ядра , в частности полосатое тело, участвуют в осуществлении сложных, безусловно-рефлекторных реакций организма, которые включают и вегетативные компоненты. Вегетативные реакции могут формироваться при возбуждении подкорковых ядер вследствие того, что последние имеют прямые связи с ретикулярной формацией мозгового ствола и гипоталамусом.

Важную роль в регуляции деятельности внутренних органов имеют нервные образования, которые входят в состав лимбической системы, или висцерального мозга: гиппокамп, поясная извилина, миндалевидные ядра.

Лимбическая система участвует в формировании эмоций и таких поведенческих реакций, в осуществлении которых имеет место ярко выраженный вегетативный компонент. Влияние висцерального мозга на функции органов, иннервируемых вегетативной нервной системой, осуществляется через гипоталамус.

Высшим уровнем регуляции вегетативной нервной системы является кора полушарий мозга . Впервые В.Я. Данилевским в 1874 г. было установлено, что раздражение некоторых участков коры больших полушарий у собак вызывает изменения дыхания, сердечной деятельности, сосудистого тонуса. Впоследствии В.М. Бехтерев, Н.А. Миславский, другие физиологи и нейрохирурги наблюдали изменения многих вегетативных функций при раздражении разных участков коры больших полушарий.

Школа И.П. Павлова рассматривает нейроны коры больших полушарий, участвующих в регуляции функций внутренних органов, как корковое представительство интероцептивного анализатора. В регуляции вегетативных функций большое значение имеют лобные доли коры больших полушарий. Раздражение этих долей вызывает изменение дыхания, пищеварения, кровообращения и половой деятельности. Поэтому считается, что в передних отделах коры больших полушарий находятся высшие центры вегетативной нервной системы.

В коре больших полушарий существуют зоны, связанные нисходящими путями с ретикулярной формацией ствола мозга. Эти зоны расположены в сенсомоторной коре, лобных глазодвигательных полях, поясной извилине, верхней височной извилине и околозатылочной области. По нисходящим путям, идущим от этих зон коры, импульсы поступают к ретикулярной формации, а от нее - к гипоталамусу и гипофизу. Имеются также прямые пути, идущие от лобной доли и от поясной извилины к гипоталамусу. С помощью этих путей кора оказывает регулирующее влияние на нижележащие уровни вегетативной нервной системы.

Вегетативная нервная система регулирует работу сердца, желез и непроизвольной (гладкой) мускулатуры без активного участия нашего сознания. В течение многих лет считалось, что функции вегетативной системы недоступны для нормального самоконтроля. Недавние эксперименты с созданием обратной связи и изучение практики восточных мистиков с их древней религиозной традицией тренировки тела позволяют предполагать, что и так называемую «непроизвольную» мускулатуру можно поставить под контроль воли.

Влияние коры головного мозга на многие внутренние органы доказано в опытах с воздействием на человека гипнотического внушения. Например, показано, что внушением можно вызвать учащение или замедление деятельности сердца, расширение или сужение сосудов, усиление отделения мочи почками, выделение пота, изменение интенсивности обмена веществ.

Известны случаи, когда влияние коры полушарий мозга проявлялось настолько резко, что человек мог произвольно вызывать увеличение частоты сердечных сокращений, поднятие волос и появление «гусиной» кожи, обычно наблюдаемой в результате охлаждения тела, а также изменять ширину зрачков, зависящую от тонуса гладких мышц радужки глаза.

Однако, если бы протекание внутренних функций требовало нашего повседневного контроля, у нас почти не оставалось бы времени на что-либо иное, кроме непрерывных забот о поддержании жизнедеятельности собственного организма. Специализация и автоматический режим работы вегетативной нервной системы создали возможность для дальнейшей эволюции мозговых механизмов, обеспечивающих высшие психические функции.

Электрическая активность мозга (электроэнцефалография)

Мозг состоит из более чем 10 млрд клеток и каждая из них представляет собой миниатюрную станцию, способную в возбужденном состоянии создавать электрический потенциал. Впервые эта электрическая активность была зареги­стрирована в 1875 г. английским хирургом Ричардом Ксйтоном. Он впервые показал, что у животного можно зарегистрировать электрическую активность мозга. В своих экспериментах этот исследователь регистрировал фоновую активность с поверхности сенсорной коры мозга кролика.

Приблизительно через 50 лет (1924) сходные наблюдения были сделаны на человеке австрийским психиатром Хансом Бергером. Запись мозговых волн осуществлялась с помощью специального прибора, способного регистрировать и усиливать потенциалы, создаваемые нервными клетками. Это делалось с помощью электродов, прикрепленных к коже черепа испытуемого. Регистрируемые слабые потенциалы усиливались и отображались графически в виде волн, которые Бергер назвал "мозговые волны". В ходе своих исследований он установил, что часть этих потенциалов принадлежит мозгу, а не обусловлена активностью мышц головы; что электрические характеристики этих сигнапов зависят от состояния испытуемых; он выделил основные виды электрической активности мозга: апьфа-волны и бета-волны; показал что электрическая активность мозга может рассматриваться в качестве ин­дикатора общей активности мозга. Метод регистрации электрической активности мозга получил название электроэнцефалографии (ЭЭГ).

Последующие исследования показали, что показатели ЭЭГ качественно отличаются от открытых ранее более простых показателей активности вегетативной нервной системы. Периодические волны электрической активности, возникающие при сокращении сердца, - это сама простота по сравнению с ужасающей сложностью ЭЭГ. Сложность формы волн ЭЭГ как будто бросает вызов исследователям, пытающимся найти в них хоть какой-нибудь смысл.

Современники Бергера отнеслись к его сообщениям скептически и "мозговые воины" стали общепризнанным фактом только после того, как Эндриан и Мэттьюз осуществили наглядную демонстрацию записи ЭЭГ на заседании английского фи­зиологического общества в 1935 г.

Последующие годы были волнующими для исследователей, которые с энту­зиазмом проникали в тайны глубин мозга. Многочисленные работы позволили устан­овить:

т.тектро энцефалографические корреляты эпилепсии:

записи с разных участков черепа региетрирх ют колебания разной формы:

При опухолях мозга в окружающей их ткани обычно появляются аномальные медленные волны и ЭЭГ можно использовать для уточнения локализации таких опу­холей:

ЭЭГ позволяет судии, о функциональном состоянии коры, например, о глубине наркоза, о наличии и определенных зонах патологических процессов.

Было проведено бесчисленное количество исследований, направленных на поиски ЭЭГ-коррелятов интеллекта, особенностей личности, поведения. Результаты в большинстве случаев оказались разочаровывающими. В мозгу человека более 10 млрд нервных клеток, сплетенных в плотную есть взаимными связями. Даже в самых гонких записях ЭЭГ неизбежно выявляется лишь слитная трескотня сотен тысяч клеток, приглушенная и искаженная черепом. По мнению одного из исследователей: "Мы подобны слепым, пытающимся понять работу фабрики, прислушиваясь снаружи к се шуму" (Margcrison ct al., 1967).

Изучение изменений ЭЭГ начинается с анализа частот и амплитуд мозговых волн.

Альфа-ритм: при низкой активности мозга большие группы нервных клеток разряжаются одновременно. Эта синхронность отображается на ЭЭГ в виде последовательности медленных волн с частотой от 8-13 гц, имеющих большую амплитуду. Альфа-ритм наиболее четко регистрируется главным образом в затылочных отведениях, когда человек находится в расслабленном состоянии, с закрытыми глазами.

Бета-ритм: во время активной работы мозга каждая участвующая в ней нервная клетка разряжается в соответствии со своей специфической функцией в своем со­бственном ритме. В результате активность становится абсолютно асинхронной и регистрируется в виде быстрых волн высокой частоты (выше 13 Гц) и малой амплитуды. Амплитуда бета-волн уменьшается по мере увеличения активности мо­зга. Ранние наблюдения о связи этих волн с состоянием относительной активности были в общем подтверждены.

Тета-ритм: колебания от 4 до 8 гц. Они появляются на первой стадии сна, а также у некоторых опытных мастеров медитации или во время пребывания исп­ытуемых в изолированной камере в условиях сенсорной депривации.

Дельта-ритм: колебания с частотой менее 4 гц. Регистрируется но время глубокого сна , а также при некоторых патологических состояниях (опухоли мозга) или у больных незадолго до смерти.

Следует подчеркнуть, что разбиение на группы по частоте более или менее прои­звольно - оно не соответствует каким-то физиологическим категориям. И связь со степенью "психической активации" представляется довольно слабой, так как есть много исключений. Напимер, у взрослых людей при эмоциональных переживаниях обнаруживаются колебания гста-частоты. Кроме того, эта классификация не под­ходит для всех возрастов: альфа-ритм появляется только в раннем подростковом возрасте.

При первых попытках более систематического анализа изменений ЭЭГ обычно измеряли и частоту, амплитуду. Одна из наиболее часто используемых зависимых переменных - это "время альфа-ритма", т.е. процент времени, занимаемый альфа-ритмом.

Еще один традиционный показатель ЭЭГ - это "блокада альфа-ритма", т.е. вне­запное очень резкое уменьшение амплитуды альфа-волн, которое обычно происходит при предъявлении раздражителей. Например, если на глаза испытуемого падает свет, то в затылочных отделах мозга у него обычно происходит блокада альфа-ритма.

Появление компьютерной техники способствовало появлению новых методов вычисления различных показателей ЭЭГ. В частности, многие исследователи стали проводить частотно-амплитудный анализ регистрируемых волн электрической активности мозга. По мере развития компьютерных способов математической обработки ЭЭГ появлялись вес новые возможности для изучения механизмов работы мозга.

Так, электроэнцефалографические исследования Л.П. Павловой (1988) обнаружили для разных видов деятельности человека универсальное правило "смещения фокуса максимальной активации (ФМА). Например, при выполнении со­знательных целенаправленных действий ФМА устойчиво регистрируется в речевых зонах левого полушария. Затем возникает генерализация возбуждения и распространение ФМА на ряд других корковых зон. Другими словами, наблюдается смена доминантно-субдомннантных отношений между полушариями и лобными и теменн­ыми ассоциативными областями коры. Завершающаяся перестройка активности коры сводится к устойчивому смещению ФМА в , а затем в задние отделы коры. В лобных долях на этой стадии ФМА наблюдается в течение коротких промежутков времени. Наиболее выраженное смещение ФМА обнаружено в проц­ессе предметной (внешнеразвернутой) деятельности и в процессе мыслительной (свернутой) деятельности. Интеллектуальные психические процессы всегда во­влекают в активацию лобные доли, но не обязательно левого полушария. При автома­тизации интеллектуального навыка наблюдается значительное усиление альфа-ритма в левой речевой зоне Брока, а ФМА смещается в правые лобные области . Такая активность мозга соответствует оперативному наглядно-действенному мышлению. Динамика перестройки корковой активности оказалась принципиально схожей при изучении разных видов деятельности: перцептивной (задачи на опознание), познават­ельной, (мышление), коммуникативной (речевое общение), преобразовательной (предметно-развернутые виды деятельности).

Кроме того, обнаруживаются индивидуально-устойчивые, привычные (в покос и при работе) типы корковой активации. А.А. Ухтомский подчеркивал важность изучения индивидуально-личностных особенностей "мозгового хронотопа", свойств интроверсии (аутизма), способностей к дифференциальной срочности реакций, разных способов оценки ситуаций: либо по пути длительного логического сукцессивного анализа, либо путем "внезапной рецепции зорким глазом специалиста" сразу всей обстановки, то сеть симультанном охватывании существенных сторон ситуации. Он говорил об индивидуально выраженных способностях к различению существенн­ого от несущественного в потоке ближайших конкретных ощущений с адекватными рефлексами на них, указывал изучать тс пути и средства, которые приводят к развитию таких способностей в масштабах истории.

Была заложена, таким образом, основа для индивидуального различия когнитивных (познавательных) стилей. Совокупность индивидуальных особенностей психики и поведения человека составляет тип высшей нервной деятельности , или темперамент человека. Он складывается из общих свойств нервной системы, которые характеризуются: 1) экстра-интроверсией; 2) -эмоциональной стабильностью-невротизмом и 3) подвижностью или инертностью нервных процессов. Проблема психофизиологических основ индивидуально-типологических различий людей стано­вится наиболее актуальной научно-практической задачей.

Функциональная ассиметрия мозга (ФАМ)

Становление проблематики ФАМ имеет давнюю историю. О предпочтении человека пользоваться той или иной рукой в различных видах деятельности было известно уже с древних времен. В соответствии с этим существовало деление людей на правшей (праворуких) и левшей (леворуких). Намного позднее врачи и анатомы обнаружили функциональную неравнозначность полушарий мозга у человека и установили, что его нервная система работает по принципу перекрестной (современное название - «контрлатеральной») иннервации: мозга контролирует и управляет правой половиной тела, а правое - левой.

Считается, что впервые вопрос о функциональных различиях полушарий мозга человека поставил английский невролог Хьюлинг Джексон в 1861 году. Им же был введен в науку термин «доминантность». Он означает, что одно из полушарий мозга в регуляции сложной нервно-психической деятельности работает с большей функциональной нагрузкой. У человека, в соответствии с , ведущим оказывается один из парных органов. Причем соблюдается принцип контрлатеральности: например, если доминирующим у человека, является левое полушарие, то ведущими будут правые рука, нога, глаз, ухо и т.д.

Представления Х. Джексона о доминантности полушарий мозга у человека по времени совпали с открытием французским хирургом и антропологом Полем Брока асимметрии речевой функции. В 1861 г. на заседании Парижского антропологического общества он представил результаты своих наблюдений за больными с повреждениями мозга. Как утверждал ученый, после повреждения левого полушария больные теряли способность говорить (феномен моторной афазии). Этого не наблюдалось при поражениях правого полушария. На этом основании П. Брока сделал вывод о локализации в левом полушарии центра речи. Этот центр речи получил название двигательного речевого центра. Состояние, когда больные испытывают специфические затруднения при произнесении звуков речи, хотя сама способность к использованию языка остается у них нормальной, получило название афазии Брока.

Вскоре после этого открытия (1874 г.), немецкий невропатолог Карл Вернике, обнаружил в височном отделе левого полушария мозга еще один центр речи, поражение которого у больных приводило к расстройству понимания речи при сохраненной способности к произношению артикулированных звуков. Этот центр получил название сенсорного, а соответствующее нарушение речи стали называть афазией Вернике.

В результате этих и более поздних открытий межполушарной асимметрии, левое полушарие человека стали считать доминирующим как в отношении речи, так и двигательной активности, ориентации тела в пространстве, рационального мышления. Правое же полушарие рассматривалось как дополнительный, малозначимый автомат.

Однако такая крайняя позиция в дальнейшем не подтвердилась. Постепенное накопление различных экспериментальных данных и результатов наблюдения за больными заставило ученых сделать вывод о том, что правое полушарие у человека не просто пассивная, добавочная структура мозга, а выполняет ряд существенных, специфических функций. В частности, целый ряд фактов позволил поставить под сомнение точку зрения о разной полушарной локализации процессов переработки вербальной и невербальной информации.

Так, было показано, что центры речи у некоторых праворуких (5% от их общего числа) и у леворуких лиц (у 15% от общего количества левшей в популяции) могут быть обнаружены в правом полушарии. Хотя, действительно, для подавляющего большинства людей характерна левосторонняя локализация (левосторонняя латеральность) центров речи.

Работы по изучению локализации зон Брока, Вернике и других речевых областей мозга, позволили нейробиологам построить модель, отражающую процесс генерирования и переработки речи мозгом. Но интересно отметить, что, хотя эта общая модель согласуется с симптомами, характерными для афазий Брока и Вернике, далеко не все согласны с тем, что она действительно отражает нормальную работу мозга, связанную с использованием языка. Многие специалисты, изучающие нервную систему, считают, что в этой функции участвует, по меньшей мере, все левое полушарие, а может быть, и ряд других отделов мозга. Действительно, как показали исследования с прямой электростимуляцией мозга у больных во время нейрохирургических операций, с речевой функцией связана значительная часть коры головного мозга. В этой связи очень важным является высказывание Х. Джексона, который предупреждал, что «локализовать поражение, ответственное за нарушение речи, и локализовать речевые функции - это совершенно разные вещи».

В другой экспериментальной ситуации, наблюдая за больными с рассеченными нервными волокнами, соединяющими между собой полушария мозга, Р. Сперри с коллегами (1973) убедились, что не только левое полушарие ответственно за речь, но и правое полушарие способно к восприятию речевых инструкций. Ими было показано, что при подаче информации в правое полушарие пациенты хорошо воспринимают устные инструкции, читают написанные слова, понимают текст с пропущенными словами, читают графически представленные слова. Это нашло свое подтверждение в более поздних исследованиях других ученых на здоровых испытуемых и при изучении эффекта одностороннего «выключения» полушарий (метод электрошоковой терапии, односторонняя наркотизация полушария мозга).

Наряду с этим, некоторые авторы подчеркивают относительное преимущество правого полушария мозга при опознании образно насыщенных слов, обозначающих конкретные предметы. А в некоторых работах отмечено отсутствие левосторонней асимметрии при анализе вербального материала или даже превосходство правого полушария.

На основании подобных экспериментов ученые пришли к заключению о том, что различия между полушариями кроются не в природе самой информации, а в способах ее анализа. В левом полушарии анализ вербальной информации выполняется по фонологическому принципу: через звуковой анализ и синтез. В противоположность этому, правое полушарие воспринимает слово целиком - через «гештальт».

При этом отмечается, что лексикон правого полушария формируется не сразу и имеет свои особенности: вероятно, он меньше по объему и в нем могут присутствовать образы целых фраз. Это относится как к устной, так и к письменной речи. В практике встречаются парадоксальные случаи, когда ребенок с правополушарной доминантой страдает дислексией, но в определенных условиях читает целыми словами достаточно длительное время. При этом он хорошо понимает прочитанное и может его пересказать.

Следует обратить особое внимание на то, что соотношение между активностью правого и левого полушарий мозга различно при восприятии человеком технических и поэтических текстов. Хотя в обоих случаях он имеет дело со словесными конструкциями, при чтении технических текстов больше активизируется левое полушарие, а при чтении художественных - правое. Созвучно этому, оказалось, что поэтическое творчество (которое связано с оперированием словами) глубоко страдает при повреждении правого полушария.

Таким образом, можно утверждать, что оба полушария мозга участвуют в функции регуляции восприятия речи и речевой активности, однако эти функции у правого и левого полушария специализированы.

Эта специализация полушарий проявилась также и относительно других высших психических проявлений. Это опровергало точку зрения, согласно которой правое полушарие является простым устройством, выполняющим вспомогательные по отношению к левому полушарию функции. Например, оказалось, что после поражения правого полушария нарушаются такие важные функции мозга, как зрительное восприятие, ориентация в пространстве и пространственное мышление. В результате накопления экспериментальных данных о ФАМ стала развиваться концепция частичного доминирования полушарий мозга у человека, в соответствии с которой левое полушарие специализируется на вербально-символических функциях, а правое - на пространственно-синтетических.

Особый вклад в разработку этой концепции и в выяснение роли правого полушария мозга был внесен нейрохирургом Робертом Сперри, который за серию своих работ получил в 1981 г. Нобелевскую премию. Этот ученый и его сотрудники разработали ряд специальных оригинальных тестов и технических приемов, с помощью которых каждое полушарие получало информацию независимо от другого. Например, изображение, которое появлялось в правом поле зрения больного с разделенными полушариями лишь на короткое мгновение, могло восприниматься только его левым полушарием. В ходе подобных экспериментов было выявлено, что больные лучше распознают на ощупь правой рукой те предметы, которые легче поддаются вербальному описанию. Но, оказалось, что такие больные не способны правой рукой нарисовать даже простой домик или куб. Левой рукой на ощупь легче распознаются предметы, которые лучше узнаются зрительно, но трудно поддаются описанию. На основании подобных фактов стали более уверенно говорить о специфичности функций, контролируемых правым полушарием. В частности, сформировалось мнение о том, что рисование пространственных фигур и ориентация в пространстве - это функция правого полушария.

Эти и многие другие факты на первых этапах исследования привели ученых к представлению о том, что левое полушарие специализировано на оперировании словами и другими условными знаками и символами, отвечает за письмо, счет, логичные рассуждения, способность к анализу и абстрактное, концептуальное мышление. Левополушарное мышление связано с линейной, последовательной переработкой информации.

Правое полушарие мозга специализируется на оперировании образами реальных предметов, отвечает за ориентацию в пространстве и легко воспринимает пространственные отношения, способно опознать целое по части, то есть ответственно за синтетическую деятельность мозга. Правое полушарие обеспечивает наглядно-образное мышление, которое связано с целостным представлением ситуаций и тех изменений в них, которые человек хочет получить в результате своей деятельности. Высказано предположение о том, что правое полушарие функционирует скорее по законам ассоциаций нелинейного типа, чем по законам логики, и заключения, в которых решающую роль играют правополушарные механизмы, основаны на множестве конвергирующих детерминант, а не на единичных каузальных связях. Левое полушарие функционирует по законам формирования алгоритмов, а правое работает эвристически и обеспечивает восприятие слабо организованной информации. Симультанность и последовательность как различительные признаки соответственно правого и левого полушарий мозга указываются почти всеми авторами.

Кроме того, с функционированием правого полушария связывают способность к рисованию и восприятию гармонии форм и цвета, музыкальный слух, артистичность, успехи в спорте (табл. 1).

В.С. Ротенберг и С.М. Бондаренко (1989) обращают внимание на то, что хотя различные проявления «правополушарной» активности (конкретно-чувственное восприятие, и ориентация в пространстве, и художественное мышление, и творчество) имеют некоторые общие корни, но они у человека либо не совпадают друг с другом (что наблюдается чаще) или своеобразно комбинируются. Так, высокая координация движений, свойственная спортсменам, может быть единственным проявлением их "правополушарности" и отнюдь не обязательно сочетается с высоким творческим потенциалом в других видах деятельности. Точно так же одаренный поэт или математик далеко не всегда способен достигнуть высот в спорте или проявить чудеса в ориентации на местности.

По мнению большинства авторов, структуры левого и правого полушарий по-разному связаны с переработкой и регуляцией положительных и отрицательных эмоций, а также с такими эмоционально-личностными характеристиками, как нейротизм, тревожность, депрессия, конформность и др.

Существует предположение, что левополушарные структуры (кора и подкорковые образования) связаны с «гиперстеническими» эмоциями (эйфория, мания, гнев, тревога), а правополушарные - с «астеническими» эмоциями (печаль, тоска, апатия, страх). У человека с "отключенным" правым полушарием наблюдается эйфория, возбуждение, словоохотливость, его реакции маниакальны, он может беспрерывно сыпать глупыми шутками. На каждый вопрос таким человеком дается подробнейший ответ, изложенный сложными грамматическими конструкциями. Однако, ударение ставится не на тех словах, во фразах интонацией выделяются предлоги и союзы.

Полная противоположность наблюдается при "отключении" левого полушария: от хорошего настроения не остается и следа, во взгляде - тоска и печаль, в немногочисленных репликах - отчаяние и мрачный скепсис, мир представляется только в черном цвете.

В литературе также имеется точка зрения о том, что левое полушарие в обычных условиях оказывает тормозное действие на правое полушарие, снижает его активность, препятствуя бесконечному возрастанию эмоциональности и устанавливая тем самым оптимальный уровень эмоциональных состояний. При этом правое полушарие рассматривается как генератор эмоций, а левое - как их модулятор.

Анализ синдромов одностороннего поражения мозга, правое и левое полушария по разному связаны с отделами вегетативной нервной системы. В частности, установлено, что имеется существенное сходство в динамике ЭЭГ-активности при патологии диэнцефальных структур и при патологии правого полушария. На этом основании утверждается его более тесная (по сравнению с левым полушарием) связь с механизмами мозга, ответственными за вегетативную, гуморальную и эндокринную регуляцию в организме.

Довольно распространенной в литературе является гипотеза о преимущественной связи отрицательных эмоций и правого полушария с возбуждением симпатического отдела, а положительных эмоций и левого полушария - с активацией парасимпатического отдела вегетативной нервной системы. В подтверждение этого можно привести работы, в которых выявлено асимметричное распределение в полушариях мозга некоторых нейромедиаторов, в частности катехоламинов. Ученые предполагают, что межполушарные различия в содержании нейромедиаторов и различия в чувствительности нервных центров к ним являются основой формирования ФАМ

Как показано в последние годы, имеется асимметрия иммунной и гормональной систем человека. То есть от преобладания того или иного полушария зависят очень многие функциональные особенности человека.

Согласно традиционной модели межполушарной асимметрии считается, что в зависимости от преобладающей роли правого или левого полушария в управлении теми или иными психическими функциями, у человека формируются те или иные особенности мыслительной и эмоциональной сферы. Действительно, опытом подтверждается существование индивидуальной склонности человека к использованию во время восприятия информации, интеллектуальных процессов и эмоциональных реакций одного определенного способа мышления. Эту индивидуальную склонность к определенному способу решения задач, которая на нейрофизиологическом уровне проявляется как преимущественная активация в процессе деятельности нервных структур одного из полушарий, в психологических исследованиях нередко связывают с различными личностными характеристиками и с некоторыми вариантами отклонений этих характеристик от нормы.

Утверждается, что человек с превалированием левополушарных функций тяготеет к теории, имеет большой словарный запас и активно им пользуется, ему присуща двигательная активность, целеустремленность, способность прогнозировать события. "Правополушарный" человек тяготеет к конкретным видам деятельности, он медлителен и неразговорчив, но наделен способностью тонко чувствовать и переживать, он склонен к созерцательности и воспоминаниям.

Интересной для понимания природы стилевых особенностей мышления представляется гипотеза В.Л. Бианки (1985; 1989) о индуктивно-дедуктивной латеральной специализации мозга. Согласно этой гипотезе, в процессе обучения правое полушарие работает по принципу дедукции, то есть сначала осуществляет синтез информации, а затем ее анализ. Левое же полушарие функционирует по принципу индукции, сначала анализируя раздражители, а затем синтезируя их.

Многие авторы обращают внимание на то, что в осуществлении сложно организованных психических функций принимает участие весь мозг в целом - и левое и правое полушарие. Однако на разных стадиях существования целостной нервно-психической функции происходит преимущественная активация того полушария, которое специализировано для соответствующей корковой деятельности. Причем каждое из них будет использовать только присущие ему стратегии, которые будут преобладать у того или иного человека в зависимости от его ведущего полушария.

Многочисленными экспериментами, выполненными, в том числе, при использовании электроэнцефалографии, установлено, что в некоторых видах деятельности ведущую роль играет левое полушарие (чтение, составление докладов, проведение экономических расчетов, освоение правил поведения в экстремальных ситуациях, разработка планов и графиков). В других видах деятельности (решение визуально-пространственных задач, разработка новых идей, рисование, живопись, музыка, танцы, планирование проведения праздничных мероприятий) в большей степени задействовано правое полушарие.

Существуют и такие виды деятельности, в которых работа левого и правого полушарий чередуются так быстро, что невозможно указать, когда лидирует одно из них, а когда другое. Мозг работает в оптимальном режиме, если оба полушария работают согласованно, и каждое максимально способствует достижению результата.

Некоторые авторы обращают внимание на то, что взаимодействие полушарий мозга, вследствие их различной чувствительности по отношению к эмоциональным воздействиям, может нарушаться при информационной перегрузке, при возрастании психоэмоционального напряжения у человека. При этом факты, полученные некоторыми исследователями с помощью ЭЭГ-регистрации, показывают, что у испытуемых более чувствительным к экспериментальным воздействиям оказывается левое полушарие мозга. Его функции, которые считаются эволюционно более молодыми, нарушаются в первую очередь. Правое полушарие мозга у испытуемых было более устойчивым и в меньшей степени зависело от средовых влияний. Его функции, предположительно являющиеся эволюционно более древними, как оказалось, угнетались позже и раньше восстанавливались.

Следует учитывать, что концепция ФАМ в настоящее время еще далека от завершения. В частности, в ее рамках не представляется возможным объяснить все многообразие и противоречивость результатов, полученных разными авторами. Так, В.Л. Деглин и Т.В. Черниговская (1990) обращают внимание на отсутствие прямых доказательств правомерности широко известного и привычного противопоставления возможностей левого полушария мозга (как логического, абстрактного, дедуктивного) возможностям правого полушария (эмпирическим, конкретным, индуктивным). С такой точкой зрения совпадает мнение А. Грабовской с сотрудниками (Grabowska et al., 1994), обращающих внимание на то, что индивидуальные особенности испытуемых часто приходят в противоречие с существующими моделями межполушарной асимметрии и что имеются значительные вариации функциональных различий полушарий.

В.В. Аршавский и В.С. Ротенберг, стремясь преодолеть противоречивость данных о межполушарной специализации функций, предложили оригинальную гипотезу. Эти авторы, утверждая, что различия между полушариями мозга у человека не могут быть сведены только к различию между восприятием образов и абстрактных знаков, высказали точку зрения о том, что значительно более продуктивно искать межполушарные особенности манипулирования этими образами и знаками.

По их мнению, спецификой «правополушарного» мышления является готовность к целостному «схватыванию», к одномоментному восприятию многих предметов и явлений мира в целом со всеми его составными элементами («гештальт»). Напротив, с «левополушарным» мышлением связывается способность к последовательному, ступенчатому познанию, которое носит соответственно аналитический, а не синтетический характер.

В результате, благодаря функциям правого полушария, складывается целостный образ мира, а левое полушарие постепенно собирает модель мира из отдельных, но тщательно изученных деталей. Такая специализация полушарий, по мнению ученых, очевидно, обеспечивает эффективное приспособление человека к окружающему миру.

Как считают эти авторы, все явления в мире связаны друг с другом многочисленными, хотя зачастую и трудноуловимыми, и даже противоречивыми связями. Но для активного взаимодействия с миром, тем более для целесообразного воздействия на него, необходимо представить эти связи в виде упорядоченной и стройной системы, необходимо выявить только вполне определенные и внутренне непротиворечивые связи, важные для упорядоченного анализа. Благодаря этому, создается относительно простая и удобная в обращении модель реальности. В этом и состоит стратегия левого полушария. Особенностью пространственно-образного («правополушарного») вклада в мышление является одномоментное «схватывание» всех имеющихся связей. Это обеспечивает восприятие реальности во всем его многообразии и сложности. Некоторые такие связи с точки зрения формальной логики могут быть даже взаимоисключающими. В таком контексте образ (или символизирующее его слово) приобретает многозначность.

В связи с изложенными выше представлениями о роли полушарий в целостном отображении окружающего мира вновь будет уместно отметить важность для гармоничного развития личности ребенка одновременного развития его правого и левого полушарий. Однако многими исследователями указывается, что в условиях нашей западной цивилизации и наших способов обучения детей в большей степени развивается лишь аналитическое мышление, однозначно понимаемый контекст. Образное же мышление занимает второстепенное и подчиненное место. В результате однобокого развития функций полушарий может нарушаться их взаимодействие, способное привести к снижению творческого потенциала и возможности гибкого реагирования человека в ответ на изменения окружающих условий.

В заключение следует подчеркнуть, что вопрос о принципах переработки информации полушариями мозга, являющийся основным в проблеме межполушарной асимметрии, далек от разрешения и требует дальнейшего изучения на междисциплинарном уровне (Вассерман и др., 1997).

Специальным направлением исследований проблемы межполушарной асимметрии и межполушарного взаимодействия являются исследования закономерностей формирования парной работы полушарий. Было показано, что функциональная неравнозначность полушарий проявляется уже на самых ранних ступенях онтогенеза. Поражение левого и правого полушарий приводит к различным по характеру расстройствам высших психических функций, как это наблюдается и у взрослых людей.

Однако у детей нарушения речевых процессов проявляются менее отчетливо, чем у взрослых, и в наибольшей степени в вербально-мнестических процессах. В ходе онтогенеза роль левого полушария в обеспечении речевых функций возрастает по мере изменения психологической структуры самой речевой деятельности (обучение грамоте, письму, чтению).

В то же время поражение правого полушария в детском возрасте приводит к более грубым пространственным нарушениям, чем у взрослых. Для детского мозга характерна высокая пластичность, вследствие чего нейропсихологические симптомы поражения левого или правого полушарий отчетливо проявляются лишь при быстро развивающихся патологических процессах или непосредственно после мозговых поражений.

Иначе протекают у детей и процессы межполушарного взаимодействия. При нарушении межполушарного взаимодействия вследствие патологического очага в мозолистом теле у детей «синдром расщепления» не возникает, что объясняется недоразвитостью у них структур, объединяющих левое и правое полушария.

Таким образом, в ходе онтогенеза изменяется как функциональная спецификация полушарий, так и механизмы их взаимодействия, что указывает на то, что парная работа полушарий формируется под влиянием и генетических, и социальных факторов.

Накопление знаний о специфике работы левого и правого полушарий мозга и закономерностях их взаимодействия с помощью как экспериментальных, так и клинических исследований подтверждает справедливость основного положения этой теории, согласно которому в осуществлении любой психической функции (как относительно элементарной, так и сложной) принимает участие весь мозг в целом - и левое и правое полушария.

Однако разные мозговые структуры и разные полушария выполняют различную дифференцированную роль в осуществлении каждой психической функции. Одним из проявлений функциональной неравнозначности различных отделов левого полушария мозга в детском возрасте является преобладание нарушений объема слухоречевой памяти при поражениях левой височной доли . В перцептивной сфере функциональная неравнозначность различных отделов левого полушария проявилась в высокой связи нарушений зрительного восприятия с поражением затылочной доли и нарушений зрительно-конструктивной деятельности с поражением теменной доли.

В этом дифференцированном участии различных мозговых образований и разных полушарий в реализации психических функций и состоит системный характер мозговой организации психической деятельности. Ни одно из полушарий не может рассматриваться как доминирующее по отношению к какой бы то ни было психической деятельности или функции в целом. Каждое полушарие доминирует по свойственному ему принципу работы, по тому вкладу, который оно вносит в общую мозговую организацию любой психической деятельности или функции.

Как писал А.Р. Лурия, «мы должны отказаться от упрощенных представлений, согласно которым одни (ðåчевые) процессы осуществляются только левым (у правшей) полушарием, в то время как другие (неречевые) - только правым полушарием... существует тесное взаимодействие обоих полушарий, причем роль каждого может меняться в зависимости от задачи, на решение которой направлена психическая деятельность, и от структур ее организации».

Одна из основных задач обучения и воспитания - развитие мышления ребенка. Но для того, чтобы правильно формировать мышление, необходимо представлять себе, хотя бы в основных чертах, его психофизиологические механизмы и возможные направления его развития. Крупные достижения в этой области связаны с открытием межполушарной асимметрии мозга.

Как уже указывалось, эта асимметрия формируется в процессе индивидуального развития и определяется взаимодействием наследственных факторов и условий социального окружения, прежде всего семейного. Различные авторы на основании результатов исследований приходят к выводу, что в первые годы жизни ребенка у него доминирует правое полушарие. Так, в исследованиях Д.А. Фарбер и ее сотрудников показано, что у детей от 3 до 7 лет в ситуации как непроизвольного, так и произвольного внимания активируется преимущественно правое полушарие, и только начиная с 10-летнего возраста - левое. Коренной перелом, по-видимому, начинается с овладевания писменностью. Сдвиг асимметрии в сторону относительного преобладания левого полушария становится особенно выраженным к концу под

Экстрапирамидная система - это совокупность анатомических образований, расположенных в больших полушариях и стволе головного мозга и участвующих в осуществлении двигательных функций . Основной частью экстрапирамидной системы являются подкорковые узлы: хвостатое ядро (nucleus caudatus); чечевичное ядро (nucleus lentiformis), в котором различают наружную часть - скорлупу (putamen) и внутреннюю - бледный шар (globus pallidus); красное ядро (nucleus ruber); черную субстанцию (substantia nigra); субталамическое ядро Льюиса (nucleus subthalamicus); медиальное ядро зрительного бугра (nucleus media] is thalami optici).
Подкорковые узлы имеют тесные связи друг с другом, с зрительным бугром, мозжечком, ретикулярной формацией ствола, корой больших полушарий головного мозга. Нисходящие пути от экстрапирамидной системы идут к двигательным клеткам передних рогов спинного мозга преимущественно по ретикуло-спинальному и рубро-спинальному путям. Экстрапирамидная система принимает участие в поддержании тонуса двигательной системы , обеспечении предуготованности к движениям, регуляции непроизвольных автоматизированных движений. По филогенетическим, морфологическим и функциональным особенностям подкорковые узлы принято делить на две части: новую - неостриатум, к которой относятся хвостатое ядро и скорлупа, и более древнюю - палеостриатум, в которую входят бледный шар и черная субстанция. На первых этапах жизни ребенка превалирует деятельность бледного шара, что проявляется в непроизвольных ритмичных движениях новорожденного. С развитием неостриатума движения ребенка становятся менее хаотичными, появляются эмоциональные проявления (улыбка), ребенок начинает выполнять ряд содружественных и выразительных движений.
Поражение экстрапирамидной системы чаще происходит при инфекционных и наследственно-дегенеративных заболеваниях нервной системы и сопровождается изменениями мышечного тонуса, движений и эмоций больного. Поражение бледного шара и черной субстанции характеризуется гипертонически-гипокинетическим синдромом, или синдромом паркинсонизма (см.). Поражение хвостатого ядра и скорлупы приводит к гипотонически-гиперкинетическому синдрому. У больного наблюдаются разнообразные непроизвольные движения - гиперкинезы (см.). Мышечный тонус снижается.
Лечение зависит от причины, вызвавшей заболевание; при инфекционной природе заболевания проводится противовоспалительное лечение.

Экстрапирамидная система - многочисленные клеточные образования, расположенные в больших полушариях и стволе головного мозга, выполняющие сложные моторно-тонические функции. К экстрапирамидной системе относятся: хвостатое ядро, чечевицеобразное ядро (см. Базальные узлы), медиальное ядро зрительного бугра, субталамическое ядро Льюиса, красные ядра, черная субстанция (см. Средний мозг), ядра гипоталамуса (см.), мозжечок (см.), вестибулярные ядра, нижняя олива (см. Продолговатый мозг) и кора головного мозга (см.), связанная со стриопаллидарной системой, мозжечком и красным ядром. По строению, функциям и филогенезу хвостатое ядро сходно со скорлупой (стриатум), бледный шар (паллидум) - с черной субстанцией (паллидонигральная система). Паллидум - генетически более древнее образование. У рыб высшим моторным аппаратом является паллидум, у птиц - стриатум, у млекопитающих - кора головного мозга. В онтогенезе на первых этапах паллидум выполняет основную моторную функцию (непроизвольные ритмичные движения новорожденных). С развитием стриатума появляются эмоциональные проявления (улыбка) и усложняются статокинетические и тонические функции (ребенок удерживает голову, выполняет содружественные и выразительные движения). Для паллидума характерно наличие крупных клеток и большого количества нервных волоков. Стриатум состоит из мелких клеток. В стриатуме имеется соматотопическое распределение: в ростральной части - голова, в средней - верхние конечности, в каудальной - туловище и нижние конечности. Важнейшим пунктом, объединяющим импульсы стриопаллидарной системы, мозжечка и других экстрапирамидных образований, является красное ядро, от которого идет путь в спинной мозг к клеткам переднего рога (руброспинальный путь). Экстрапирамидная система имеет кольца обратной связи, оказывающие влияние на контроль двигательных функций. Из коры больших полушарий импульсы идут в стриопаллидарную систему, затем через зрительный бугор обратно в кору. Основное кольцо обратной связи проходит через хвостатое ядро к бледному шару, затем к зрительному бугру и оттуда в премоторную зону коры. Более широкое кольцо идет через стриопаллидарную систему и мозжечок.
Физиология . Экстрапирамидная система осуществляет регуляцию тонуса мышц, позы туловища и конечностей, статокинетических и кинетических функций. Сюда включаются приспособление к выполнению моторных актов, подача импульсов к действию, обеспечение скорости, ритма, плавности, гибкости движений. С тонусом мышц неразрывно связана поза туловища и конечностей, приспособление позы к выполнению различных движений и изменение позы во время различных двигательных актов. Экстрапирамидная система участвует в выполнении выразительных мимических, вспомогательных и содружественных (синкинезии при ходьбе) движений, жестикуляции и автоматизированных моторных актов (гримасы, свист и др.), в эмоциональных проявлениях (смех, плачи др.).

Рис. 1. Электромиограмма при паркинсонизме.

Рис. 2. Акинетико-ригидный синдром.

Патология . Патологические синдромы возникают при поражении ядер и их связей. Выявлению патологии экстрапирамидной системы помогают специальные методы регистрации биоэлектрической активности мышц (рис. 1), миотонометрия, тремография, кимография гиперкинезов в покое и при раздражениях. При поражении экстрапирамидной системы нарушаются двигательные функции, тонус мышц, поза туловища, эмоциональные проявления, вазомоторные реакции. Нарушения, сопровождающиеся избытком движений и поз, проявляются гиперкинезами (см.), чрезмерной жестикуляцией, синкинезиями (см.); нарушения с дефицитом движений - акинезом. Акинетико-ригидный (паллидонигральный) синдром (рис. 2) проявляется акинезом, пластической гипертонией мышц, феноменом зубчатого колеса, дрожанием типа «катания пилюль», флексорной позой головы и туловища, маскообразностью лица, немодулированной речью, отсутствием эмоциональных выражений. Начало произвольных движений затруднено; исчезают вспомогательные движения при вставании и ходьбе (ахейрокинез); походка мелкими шагами с ретро-, латеро- или пропульсией; повышаются постуральные рефлексы (см.) Вестфаля и Тевенара-Фуа; склонность к каталепсии. Акинетико-ригидный синдром возникает при энцефалите, интоксикации угарным газом, марганцем, ртутью, свинцом, при атеросклерозе с поражением подкорки, при прогрессирующих поражениях паллидарной системы (болезнь Паркинсона, атеросклеротическая мышечная ригидность Ферстера). Гиперкинетико-гипотонический (стриарный) синдром характеризуется избыточными движениями, вычурными позами, гримасами, усиленной жестикуляцией, гипермимией, речь бывает толчкообразная, почерк размашистый, походка крупными неравномерными шагами. При гипотонии мышц наблюдается тонический коленный рефлекс Гордона (застывание голени в разогнутом положении).

Рис. 3. Хореический гиперкинез.

При поражении экстрапирамидной системы наблюдается тремор, различный по характеру, частоте и ритму, по сроку проявления (постоянное или пароксизмальное дрожание), по зависимости от различных раздражений (эмоциональных возбуждений, ноцицептивных и проприоцептивных раздражений), по локализации (в пальцах, руке, ноге, голове и др.). Интенционное дрожание, проявляющееся во время движения, возникает при поражении мозжечка и его связей. Хореатические гиперкинезы возникают в связи с поражением мелких клеток стриарной системы. При хорее (см.) бывают быстрые неритмические нелокализованные избыточные движения в мышцах лица, языка, конечностей, туловища, шеи (например, при малой хорее Сиденгама, при хорее Гентингтона, хорее беременных). Гемихорея - односторонний хореический гиперкинез (рис. 3) - может наблюдаться и при нарушениях мозгового кровообращения. Хореиформный гиперкинез в сочетании с изменением психики встречается при хорее Гентингтона. Пароксизмальный хореиформный рубральный гиперкинез характеризуется участием в движениях всех конечностей, проявляющимся в форме рубящих, размашистых движений в конечностях, с ротацией туловища, головы и всех четырех конечностей. Гемибаллизм - гиперкинез, проявляющийся быстрыми вращательными бросковыми движениями в руке и ноге одноименной стороны в сочетании с гипотонией мышц, наблюдается при поражении ядра Льюиса и его связей. Размашистые качательные движения (напоминающие взмах крыльев птиц), сочетающиеся с гиперкинезом речевых мышц, наблюдаются при гепато-лентикулярной дегенерации (см.), когда поражаются главным образом чечевицеобразные ядра. При хореоатетозе (поражение стрио-паллидума) наблюдаются хореатические и атетотические движения. Разрушение крупных клеток полосатого тела вызывает атетоз (см.), для которого характерны медленные червеобразные движения в пальцах и кисти (рис. 4), реже в стопе. Для двустороннего атетоза характерно вовлечение в гиперкинез обеих конечностей.

Рис. 4. Атетотический гиперкинез пальцев и кисти.

Псевдоатетотические гиперкинезы конечностей возникают при нарушении глубокой чувствительности на парализованных конечностях. Гиперпатические (таламо-стриарные) гиперкинезы в паретичных конечностях состоят из сгибательно-разгибательных движений в ноге, затем в руке и возникают в ответ на ноцицептивные раздражения, наносимые в зоне гиперпатии. При стриарном синдроме могут наблюдаться тики лицевых мышц, брюшной стенки. Тик диафрагмальных мышц вызывает икоту. Гиперкинезы с респираторными пароксизмами возникают в результате сокращения мышц диафрагмы, передней брюшной стенки и характеризуются приступами быстрых судорожных выдохов, сопровождающихся криком, покашливанием, гиперкинезом мышц живота, напряжением диафрагмы. Во время пароксизмального респираторного гиперкинеза учащается пульс, наблюдаются вазомоторные расстройства. Миоклонические подергивания сочетаются с эпилептическими припадками (при миоклонус-эпилепсии Унферрихта - Лундборга). Симметричные клонические подергивания брюшных мышц, задних мышц бедра, четырехглавых мышц, появляющиеся эпизодически (длительностью 10-15 мин.), наблюдаются при парамиоклонусе Фридрейха. Тонические сокращения мышц лица (лицевой параспазм) проявляются двусторонне, усиливаясь при волнении. Торсионный спазм характеризуется тоническим сведением мышц туловища и шеи (рис. 5), усиливающимся при ходьбе; ротационные движения конечностей и туловища при этом вызывают нарушения походки, речи, глотания.

Рис. 5. Торсионный спазм.

При поражении экстрапирамидной системы нередко встречаются тонический спазм взора, блефароспазм, неудержимые приступы смеха, плача.
Сложные пароксизмальные гиперкинезы с тоническими флексорно-аддукторными движениями конечностей возникают при поражении экстрапирамидной системы во время насильственного плача; протекают они циклом (по 2-3 мин.) в виде махания рукой перед лицом, ритмичных потираний области сердца, лица (Н. К. Боголепов). Своеобразным экстрапирамидным синдромом является подкорковая эпилепсия.
Хирургические вмешательства на паллидуме или вентролатеральном ядре таламуса при паркинсонизме (см.) показали, что при разрушении одного из этих образований прекращается тремор и скованность. Нейрофармакологические средства атропинового ряда (артан) могут подавлять гиперкинезы и влиять на тонус мышц при экстрапирамидных расстройствах.

Экстрапирамидная система включает в себя проводящие и двигательные пути, которые не проходят через пирамиды продолговатого мозга. Данные пути регулируют обратную связь между спинным мозгом, стволом мозга, мозжечком и корой. В состав экстрапирамидной системы включены хвостатое ядро, скорлупа чечевицеобразного ядра, бледный шар, субталамическое ядро, черное вещество и красное ядро.

Центром данной системы является спинной мозг. Ретикулярная формация расположена в покрышке спинного мозга. Полосатое тело получает импульсы от разных участков коры головного мозга. Большая часть импульсов поступает от лобной двигательной коры. Волокна являются тормозящими по своему действию. Другая часть волокон поступает к полосатому тела таламуса.

Афферентные волокна от хвостатых ядер и скорлупы чечевицеобразного ядра идут к бледному шару, а именно к его латеральному и медиальному сегментам. Эти сегменты отделяются друг от друга внутренней медуллярной пластинкой, также имеется связь между корой головного мозга и красным ядром, черной субстанцией, ретикулярной формацией и субталамическим ядром. Все вышеперечисленные волокна являются афферентными.

Черное вещество имеет связи со скорлупой и хвостатым ядром. Афферентные волокна уменьшают тормозную функцию полосатого тела. Эфферентные волокна оказывают тормозное влияние на нигростриарные нейроны.

Первый вид волокон – допаминергические, второй – ГАМК-эргические. Часть эфферентных волокон полосатого тела проходит через бледный шар, его медиальный сегмент. Волокна образуют толстые пучки, один из которых – лентикулярная петля. Большая часть данных волокон от бледного шара направляется к таламусу. Данная часть волокон составляет паллидоталамический пучок, заканчивающийся в передних ядрах таламуса. В заднем ядре таламуса заканчиваются волокна, берущие начало из зубчатого ядра мозжечка.

Ядра таламуса имеют двусторонние связи с корой. Имеются волокна, которые идут от базальных ядер к спинному мозгу. Данные связи помогают выполнять произвольные движения плавно. Функция некоторых образований экстрапирамидной системы не выяснена.

Семиотика экстрапирамидных расстройств. Главными симптомами нарушений экстрапирамидной системы являются дистония (нарушения тонуса мышц) и расстройства непроизвольных движений, которые проявляются гиперкинезами, гипокинезами и акинезами.

Экстрапирамидные расстройства можно разделить на два клинических синдрома: акинетико-ригидный и гиперкинетико-гипотонический. Первый синдром в своей классической форме проявляется при болезни Паркинсона.

При данной патологии повреждение структур нервной системы является дегенеративным и приводит к утрате нейронов черного вещества, содержащих меланин, а также к утрате допаминергических нейронов, связанных с полосатым телом. Если процесс является одностороннем, то проявление локализуется на противоположной стороне тела.

Однако болезнь Паркинсона обычно является двусторонней. Если патологический процесс наследственный, то речь идет о дрожательном параличе. Если причина утраты нейронов является другой, то это болезнь Паркинсона или паркинсонизм. Такими причинами могут быть церебральный сифилис, церебральный атеросклероз, тиф, поражение среднего мозга при опухоли или травме, интоксикация различными веществами, длительный прием резерпина или фенотиозина. Выделяется также постэнцефалитический паркинсонизм, являющийся следствием летаргического энцефалита. Акинетикоригидный синдром характеризуется триадой симптомов (акинезом, ригидностью, тремором).

Акинез проявляется медленным снижением подвижности, с постепенным выпадением мимических и экспрессивных движений. Больному трудно начать ходьбу. Начав какое-либо движение, больной может остановиться и сделать несколько ненужных движений или шагов. Это происходит вследствие замедления контриннервации, что носит названия пропульсии, ретропульсии или латеропульсии и зависит от направления дополнительных движений.

Выражение лица характеризуется гипо– или амимией, что объясняется заторможенностью движения мимических мышц. Страдает также речь в результате ригидности и тремора мышц языка. Она становится дизартричной и монотонной. Движения больного становятся медленными и неоконченными. Все тело находится в состоянии антефлексии. Ригидность проявляется в мышцах разгибателях.

При обследовании выявляется феномен зубчатого колеса. Он заключается в том, что при пассивных движениях в конечностях отмечается ступенчатое снижение тонуса мышц антагонистов. Часто проводится тест падение головы: если поднятую голову лежащего на спине больного резко отпустить, то она постепенно отпускается обратно, а не падает. Повышения рефлексов не наблюдается, также как и патологических рефлексов и парезов.

Все рефлексы становятся трудно вызываемыми. Тремор является пассивным. Частота его составляет 4–8 движений в секунду, при паркинсонизме тремор является антагонистическим, т. е. возникает в результате взаимодействия противоположных по функции мышц.

Данный тремор прекращается при выполнении целенаправленных движений. Механизмы возникновения триады симптомов при паркинсонизме полностью не выяснены. Имеется предположение, что акинез возникает в результате утраты передачи импульсов в полосатое тело.

Другой причиной акинеза может быть поражение нейронов черного вещества, приводящее к прекращению эфферентной импульсации тормозного действия. Ригидность мышц также может возникать вследствие потери нейронов черного вещества. При утрате данных нейронов не происходит торможения эфферентной импульсации к полосатому телу и бледному шару. Антагонистический тремор при паркинсонизме может развиваться в клетках спинного мозга, которые начинают передавать импульсы к мотонейронам в ритмическом порядке. В то же самое время передаваемые через эти же клетки тормозные импульсы от полосатого тела не поступают к спинному мозгу.

Гиперкинетико-гипотонический синдром возникает в результате повреждения полосатого тела. Гиперкинезы при данном синдроме появляются при повреждении тормозных нейронов неостриатума.

В норме импульсы от этих нейронов поступают к бледному шару и черному веществу. При повреждении данных клеток к нейронам нижележащих систем поступает избыточное количество возбуждающих импульсов. Вследствие этого развиваются атетоз, хорея, спастическая кривошея, торсионная дистония, баллизм.

Атетоз, как правило, развивается в результате перинатального поражения полосатого тела. Характеризуется медленными, червеобразными непроизвольными движениями. Отмечается переразгибание дистальных отделов конечностей. Мышечное напряжение спастически повышается поочередно в мышцах-агонистах и мышцах-антагонистах. Произвольные движения нарушаются, так как отмечаются спонтанно возникающие гиперкинетические движения. Эти движения могут захватывать мышцы лица и языка. В некоторых случаях отмечаются спастические приступы смеха или плача.

Лицевой параспазм представляет собой тоническое сокращение мышц лица симметричного характера. Может отмечаться геми– или блефароспазм. Данная патология заключается в изолированном сокращении круговых мышц глаз. В некоторых случаях это сокращение сочетается с судорогами мышц языка или рта клонического характера. Лицевой параспазм не проявляется во сне, усиливается при ярком освещении или волнении.

Хореический гиперкинез появляется в виде коротких подергиваний непроизвольного характера. Эти движения развиваются беспорядочно в различных группах мышц, вызывая разнообразные движения. Первоначально отмечается движение в дистальном, а затем в проксимальном отделах конечности. Такой гиперкинез может затрагивать мышцы лица, вызывая появление гримас.

Спастическая кривошея, а также торсионная дистония являются наиболее важными синдромами дистонии. Они развиваются в результате поражения нейронов скорлупы, центромедианного ядра таламуса и других ядер экстрапирамидной системы. Спастическая кривошея проявляется спастическими сокращениями мышц шеи.

Эта патология проявляется в виде непроизвольных движений головы, таких как повороты и наклоны. Также в патологический процесс могут вовлекаться грудино-ключично-сосцевидная и трапециевидная мышцы. Торсионная дистония проявляется движениями туловища, а также проксимальных отделов конечностей в виде вращения и поворотов.

Иногда эти движения выражены настолько, что больной не может ходить и даже стоять. Торсионная дистония бывает симптоматической и идиопатической. Симптоматическая возникает при родовой травме , энцефалите, гепатоцеребральной дистрофии, желтухе и ранней хорее Гентингтона.

Баллистический синдром заключается в довольно быстрых сокращениях мышц проксимальных отделов конечностей, которые носят вращающий характер. Движения при этой патологии являются размашистыми вследствие сокращения достаточно крупных групп мышц. Причиной патологии является поражение субталамического ядра, а также его связи с бледным шаром. Данный синдром появляется на стороне, противоположной очагу поражения.

Миоклонические подергивания возникают в результате поражения красного ядра, центрального покрышечного пути или мозжечка. Проявляются быстрыми сокращениями разных групп мышц, которые носят беспорядочный характер.

Тики проявляются в виде быстрых сокращений мышц непроизвольного характера. В большинстве случаев поражаются мышцы лица.

Консервативные методы лечения далеко не всегда приводят к положительному эффекту. Применяется стереотаксическое вмешательство, которое основывается на том, что при поражении полосатого тела утрачивается его тормозное действие на бледный шар и черное вещество, что приводит к избыточному стимулирующему влиянию на эти образования.

Предполагается, что гиперкинезы возникают под воздействием патологической импульсации к ядрам таламуса и к коре головного мозга. Важным является прерывание данной патологической импульсации.

В пожилом возрасте часто развивается церебральный атеросклероз, приводящий к гиперкинезам и паркинсоноподобным нарушениям. Чаще всего проявляется повторением фраз, слов или слогов, а также некоторых движений. Данные изменения связаны с некротическими очагами в полосатом теле и бледном шаре. Эти очаги обнаруживаются посмертно в виде небольших кист и рубцов – лакунарный статус.

Автоматизированные действия представляют собой разнообразные движения и сложные двигательные акты, которые протекают без контроля сознания.

Клинически проявляются на стороне очага поражения, причиной патологии является нарушение связи коры головного мозга с базальными ядрами. При этом сохраняется связь последних со стволом мозга.

Экстрапирамидная система – это система корковых, подкорковых и стволовых ядер головного мозга и проводящих путей соединяющих их между собой, а так же с двигательными ядрами черепных нервов ствола головного мозга и передних столбов спинного мозга, осуществляющая непроизвольную автоматическую регуляцию и координацию сложных двигательных актов, регуляцию мышечного тонуса, поддержание позы, организацию двигательных проявлений эмоций.

Состав экстрапирамидной системы:

    Кора полушарий большого мозга;

    Базальные ядра конечного мозга: хвостатое и чечевицеобразное;

    Субталамическое ядро и ядра таламуса промежуточного мозга;

    Красное ядро и черное вещество, ядра крыши среднего мозга;

    Вестибулярные ядра;

    Ядра нижней оливы;

    Мозжечок;

    Ядра ретикулярной формации;

    Проводящие пути.

Функции экстрапирамидной системы:

    Обеспечение сложных автоматизированных движений (ползание, плавание, бег, ходьба, плевание, жевание и другие);

    Поддержание тонуса мышц и его перераспределение при движении;

    Участие в артикуляции речи и мимических выразительных движениях;

    Поддержание сегментарного аппарата в готовности к действию.

25.Лимбическая система.

Лимбическая система – неспецифическая система головного мозга, связанная с обонятельным анализатором, главной функцией которой является организация целостного поведения и интеграция процессов физиологической активности.

Функции лимбической системы:

    Эмоционально-мотивационное поведение и адаптация к условиям внешней и внутренней среды;

    Сложные формы поведения: инстинкты, пищевое, половое, оборонительное, смена фаз сна и бодрствования;

    Регулирующее влияние на кору и подкорковые образования для установки необходимого соответствия уровней активности.

Состав лимбической системы:

    Корковые структуры: лимбическая доля (поясная, парагиппо-кампальная, зубчатая и ленточная извилины) и гиппокамп;

    Подкорковые образования: базальная часть конечного мозга, структуры промежуточного мозга (сосочковые тела, ядра поводка), отделы среднего мозга (межножковое ядро, центральное серое вещество) и проводящие пути, обеспечивающие связь между этими структурами.

Особенность лимбической системы – формирование между ядрами двусторонних связей и множества замкнутых кругов разного диаметра и протяженности (большие и малые).

Большой лимбический круг:

    Состав: гиппокамп – свод – сосцевидные тела гипоталамуса – сосцевидно-таламический пучок Вик-д`Азира – передние ядра таламуса – таламопоясная лучистость – поясная извилина – парагиппокампальная извилина – гиппокамп.

    Функция: обеспечение процессов памяти и обучения.

Малый лимбический круг:

    Состав: миндалевидное тело – гипоталамус – ретикулярная формация среднего мозга – миндалевидное тело.

    Функция: регуляция агрессивно-оборонительных, пищевых и сексуальных форм поведения.

26.Закономерности в строении двигательных проводящих путей .

Нисходящие, Эфферентные, Двигательные, Сознательные (Tr. Cortico…), Рефлеткорные (от подкорковых образований).

Среди трактов выделяют Главный Пирамидный Путь , который состоит из 3-х трактов. Первый проходит от нейронов прецентральной извилины до двигательных нейронов, сосредоточенных в ядрах ствола мозга - это кортико-ядерный путь. Два других тракта: кортикоспинальные передний и боковой идут от прецентральной извилины до ядер передних рогов спинного мозга. Волокна каждого тракта имеют перекресты в разных отделах мозга.

Корково-ядерный путь сознательных движений перекрещивается над ядрами черепных нервов в мозговом стволе. Он включает в себя двух нейронные рефлекторные дуги.

Латеральный и передний кортикоспинальные пути тоже проводят сознательные импульсы. Латеральный путь перекрещивается на границе продолговатого и спинного мозга, образуя пирамидный перекрест . Передний путь перекрещен в спинном мозге.

Корково-мосто-мозжечковый путь перекрещивается в мосту на уровне средних ножек мозжечка. Первые двигательные нейроны находятся в коре лобной, височной, теменной и затылочной долей . Свои аксоны они проводят через внутреннюю капсулу (колено). Вторые нейроны лежат в двигательных ядрах моста и коре полушарий мозжечка. Аксоны из мозжечка выходят через среднюю ножку к двигательным ядрам моста, где переключаются.

Нисходящие экстрапирамидные тракты бессознательных движений относятся к древним путям, и они всегда начинаются в подкорковых структурах мозга . Рефлекторные дуги у них имеют двух нейронный состав и перекресты на разных уровнях мозга. Часть из них проходит только по одной стороне, не образуя перекрестов.

Красноядерно-спинномозговой путь регуляции и координации мышечного тонуса и автоматических мышечных сокращений перекрещивается в среднем мозге.

Преддверно-спинномозговой путь равновесия и координации движений.

Покрышечно-спинномозговой путь зрительно-слуховых безусловных рефлексов.

Оливо-спинальный путь автоматического мышечного тонус а.

Задний продольный пучок - путь координации движений глазных яблок, головы и шеи.

Волокна пучка связывают между собой двигательные ядра III, IV, VI пары черепных нервов и ядра передних рогов спинного мозга шейного и грудного отделов.

    Характеристика пирамидных путей.

Пирамидные Tractus pyramidalis (волевые, сознательные) проводят импульсы от коры к двигательнгым ядрам и далее к мышцам. Их подразделяют на: fibrae corticospinales и fibrae corticonucleares

Fibrae (tractus) corticospinalis

    1 нейрон – гигантская пирамидная клетка (Беца) – нейрон пятого слоя коры прецентральной извилины

    Пути проходят через внутреннюю капсулу в задней ее ножке сразу за коленом.

    В среднем мозге волокна пути располагаются в ножках мозга, в средней их части.

    В области моста – волокна проходят в вентральной части моста

    В продолговатом мозге – в пирамидах.

    На границе со спинным мозгом 85% путей совершают перекрест (decussatio pyramidum), остальные 15% идут в спинной мозг без перекреста и переходят на противоположную сторону в соответствующем сегменте спинного мозга.

    2 нейрон – клетка двигательного ядра переднего рога спинного мозга.

    Аксон второго нейрона проходит в составе переднего корешка, канатика и ветвей спинномозгового нерва к скелетной мышце.

Fibrae (tractus ) corticonuclearis (corticobulbaris )

    1 нейрон - гигантская пирамидная клетка (Беца) пятого слоя коры в прецентральной извилине

    Путь проходит в колене внутренней капсулы

    2 нейрон – клетки соматических двигательных ядер черепных нервов

    Аксон второго нейрона проходит в составе черепного нерва к мышце

    Путь дает ответвления на свою и противоположную сторону, за исключением ядер Х11 и V11 пар черепных нервов

    Характеристика двигательных экстрапирамидных путей.

Экстрапирамидные Пути проводят импульсы к мышцам от подкорковых центров: базальных ядер полушарий, дорзального (зрительного) бугра, красного ядра, черного вещества, ядер оливы, ядер вестибулярного нерва, ретикулярной формации. Экстрапирамидная система автоматически поддерживает тонус скелетной мускулатуры и обеспечивает работу мышц антагонистов. К экстрапирамидным путям относятся: tractus rubrospinalis, tractus tectospinalis, tractus reticulospinalis, tractus olivospinalis, tractus vestibulispinalis. Тракты начинаются в соответствующих подкорковых ядрах (1 нейрон). Аксоны первых нейронов, предварительно совершив переход на противоположную сторону, переключаются на двигательные клетки передних рогов спинного мозга отростки которых заканчиваются в скелетных мышцах. К экстрапирамидной системе относятся и пути корково-мозжечковой корреляции (tractus cortico-ponto – cerebello – dentato – rubro – spinalis.

    Принципиальные морфологические отличия центрального и периферического паралича.

ПАРАЛИЧ - полное выпадение двигательных функций с отсутствием мышечной силы.

Парез – ослабление двигательных функций со снижением мышечной силы.

Паралич и парез развиваются в результате различных патологических процессов (травмы, кровоизлияния и др.) в центральной или периферической части нервной системы.

Центральный паралич

1.Группы мышц поражены диффузно, не бывают поражения отдельных мышц Умеренная атрофия

2.Спастичность с повышением сухожиль­ных рефлексов

3.Разгибательный подошвенный рефлекс, симптом Бабинского

4.Фасцикулярных подергиваний не бы­вает

Периферический паралич

1.Могут быть поражены отдельные мыш­цы

2.Выраженная атрофия, 70-80% от общей массы

3.Вялость и гипотония пораженных мышц с выпадением сухожильных рефлек­сов Подошвенный рефлекс, если вызывает­ся, то нормального, сгибательного типа

4.Могут быть фасцикуляции; при электромиографии выявляют снижение количества двигательных единиц и фибрилляции

    Закономерности в строении чувствительных проводящих путей.

Восходящие, Центростремительные, Афферентные, Чувствительные (…), Сознательные (в кору), рефлекторные.

    Характеристика сознательных афферентных путей.

Проприоцептивные пути коркового направления

Fasciculus gracilis (Goll) и fasciculus cuneatus (Burdach).

    1 нейрон

    Аксон в составе заднего корешка идет к спинному мозгу, не вступая в серое вещество заднего рога , ложится в задние канатики и идет до продолговатого мозга (tractus gangliobulbaris)

    2 нейрон - nucleus gracilis et nucleus cuneati лежит в одноименных бугорках продолговатого мозга

    Аксоны вторых нейронов изгибаясь вентрально и переходя на противоположную сторону, дают начало формированию медиальной петли

(Lemniscus medialis – tractus bulbothalamicus)

    3 нейрон – клетки латерального ядра дорзального (зрительного) бугра

    Отростки третьих нейронов (tractus thalamocorticalis) проходят через заднюю ножку внутренней капсулы и достигают прецентральной и постцентральной извилин (клетки четвертого слоя коры).

    Характеристика рефлекторных афферентных путей.

Проприоцептивные пути мозжечкового направления

Tractus spinocerebellaris anterior (Gowers) et spinocerebellaris posterior (Flechsig)

    1 нейрон – псевдоуниполярная клетка спинномозгового узла

    Дендрит первого нейрона заканчивается рецептором в мышцах, сухожилиях, связках, суставах

    Аксон в составе заднего корешка входит в серое вещество спинного мозга и переключается на тело второго нейрона

    2 нейрон: для Gowersa – nucleus intermediomedialis

для Flechsiga - nucleus thoracicus

    Аксоны второго нейрона пути Gowersa через переднюю белую спайку направляются в боковой канатик противоположной стороны, поднимаются в продолговатый мозг, мост и в верхнем мозговом парусе переходят на противоположную сторону и через верхнюю ножку мозжечка достигают коры червя. Аксоны второго нейрона пути Flechsiga направляются в боковой канатик той же стороны, поднимаются в продолговатый мозг и через нижнюю ножку мозжечка достигают коры червя.

    Медиальная петля.

Пучок волокон образованный аксонами тонкого и клиновидного ядер, проводит сознательный проприоцептивные пути и пути общей чувствительности, т.к. к ней присоединяются спиноталамические пути.

    Комиссуральные нервные волокна головного мозга, их строение.

Комиссуральные нервные волокна соединяют аналогичные области двух полушарий. Нервные волокна мозга подразделяются на ассоциативные, комиссуральные и проекционные - все они образуют проводящие пути для нервных импульсов. Ассоциативные волокна соединяют клетки в пределах одного полушария, а в - на уровне одной половины. Комиссуральные волокна связывают правое и левое полушарие, правую и левую половины спинного мозга. Проекционные волокна соединяют выше и нижележащие структуры мозга: клетки коры с клетками ядер и органами. Они подразделяются на восходящие (сенсорные) и нисходящие (двигательные) пути или тракты.

Коммисуральные волокна, входящие в состав так называемых мозговых комиссур, или спаек, соединяют симметричные части обоих полушарий. Самая большая мозговая спайка - мозолистое тело, corpus callosum , связывает между собой части обоих полушарий, относящиеся к neencephalon .

Две мозговые спайки, comissura anterior и comissura inferior , гораздо меньшие по своим размерам, относятся к rhinencephalon и соединяют: comissura anterior - обонятельные доли и обе парагиппокампальные извилины, comissura fornicis - гиппокампы.

Под мозолистым телом находится так называемый свод, forniх , представляющий два дугообразных белых тяжа, которые, в средней своей части, corporis fornicis , соединены между собой, а спереди и сзади расходятся, образуя впереди столбы свода, columnae fornicis , позади - ножки свода, crura fornicis . Crura fornicis , направляясь назад, спускаются в нижние рога боковых желудочков и переходят там в fimbria hyppocampi . Между crura fornicis под splenium corporis callosi протягиваются поперечные пучки нервных волокон, образующие commissura fornicis . Передние концы свода, columnae fornicis , продолжаются вниз до основания мозга, где оканчиваются в corpora mamillaria , проходя через серое вещество hypothalamus . Columnae fornicis ограничивают лежащие позади них межжелудочковые отверстия, соединяющие III желудочек с боковыми желудочками. Впереди столбов свода находится передняя спайка, commissura anterior , имеющая вид белой поперечной перекладины, состоящей из нервных волокон. Между передней частью свода и genu corporis callosi натянута тонкая вертикальная пластинка мозговой ткани - прозрачная перегородка, septum pellucidum , в толще которой находится небольшая щелевидная полость, cavum septi pellucidi .

    Морфологические основы альтернирующего синдрома.

Альтерни́рующие синдромы - синдромы, которые сочетают в себе поражение черепно-мозговых нервов на стороне очага с проводниковыми расстройствами двигательной и чувствительной функций на противоположной стороне.

Они возникают при поражении анатомических составляющих мозгового ствола: ножек мозга – пединкулярные перекрестные синдромы, моста - понтинные, продолговатого мозга – бульбарные. К ним же относится и перекрестная гемиплегия - повреждение перекрещивающегося на разных уровнях мозга пирамидного проводящего пути. Поэтому возникает, например, паралич или парез правой руки и левой ноги при поражениях ниже мозгового ствола. При противоположной гемианестезии повреждаются восходящие пути: спиноталамические и бульботаламические такты, волокна медиальной петли.

Экстрапирамидная система – это система корковых, подкорковых и стволовых ядер головного мозга и проводящих путей соединяющих их между собой, а так же с двигательными ядрами черепных нервов ствола головного мозга и передних столбов спинного мозга, осуществляющая непроизвольную автоматическую регуляцию и координацию сложных двигательных актов, регуляцию мышечного тонуса, поддержание позы, организацию двигательных проявлений эмоций.

Состав экстрапирамидной системы:

    Кора полушарий большого мозга;

    Базальные ядра конечного мозга: хвостатое и чечевицеобразное;

    Субталамическое ядро и ядра таламуса промежуточного мозга;

    Красное ядро и черное вещество, ядра крыши среднего мозга;

    Вестибулярные ядра;

    Ядра нижней оливы;

    Мозжечок;

    Ядра ретикулярной формации;

    Проводящие пути.

Функции экстрапирамидной системы:

    Обеспечение сложных автоматизированных движений (ползание, плавание, бег, ходьба, плевание, жевание и другие);

    Поддержание тонуса мышц и его перераспределение при движении;

    Участие в артикуляции речи и мимических выразительных движениях;

    Поддержание сегментарного аппарата в готовности к действию.

25.Лимбическая система.

Лимбическая система – неспецифическая система головного мозга, связанная с обонятельным анализатором, главной функцией которой является организация целостного поведения и интеграция процессов физиологической активности.

Функции лимбической системы:

    Эмоционально-мотивационное поведение и адаптация к условиям внешней и внутренней среды;

    Сложные формы поведения: инстинкты, пищевое, половое, оборонительное, смена фаз сна и бодрствования;

    Регулирующее влияние на кору и подкорковые образования для установки необходимого соответствия уровней активности.

Состав лимбической системы:

    Корковые структуры: лимбическая доля (поясная, парагиппо-кампальная, зубчатая и ленточная извилины) и гиппокамп;

    Подкорковые образования: базальная часть конечного мозга, структуры промежуточного мозга (сосочковые тела, ядра поводка), отделы среднего мозга (межножковое ядро, центральное серое вещество) и проводящие пути, обеспечивающие связь между этими структурами.

Особенность лимбической системы – формирование между ядрами двусторонних связей и множества замкнутых кругов разного диаметра и протяженности (большие и малые).

Большой лимбический круг:

    Состав: гиппокамп – свод – сосцевидные тела гипоталамуса – сосцевидно-таламический пучок Вик-д`Азира – передние ядра таламуса – таламопоясная лучистость – поясная извилина – парагиппокампальная извилина – гиппокамп.

    Функция: обеспечение процессов памяти и обучения.

Малый лимбический круг:

    Состав: миндалевидное тело – гипоталамус – ретикулярная формация среднего мозга – миндалевидное тело.

    Функция: регуляция агрессивно-оборонительных, пищевых и сексуальных форм поведения.

26.Закономерности в строении двигательных проводящих путей .

Нисходящие, Эфферентные, Двигательные, Сознательные (Tr. Cortico…), Рефлеткорные (от подкорковых образований).

Среди трактов выделяют Главный Пирамидный Путь , который состоит из 3-х трактов. Первый проходит от нейронов прецентральной извилины до двигательных нейронов, сосредоточенных в ядрах ствола мозга - это кортико-ядерный путь. Два других тракта: кортикоспинальные передний и боковой идут от прецентральной извилины до ядер передних рогов спинного мозга. Волокна каждого тракта имеют перекресты в разных отделах мозга.

Корково-ядерный путь сознательных движений перекрещивается над ядрами черепных нервов в мозговом стволе. Он включает в себя двух нейронные рефлекторные дуги.

Латеральный и передний кортикоспинальные пути тоже проводят сознательные импульсы. Латеральный путь перекрещивается на границе продолговатого и спинного мозга, образуя пирамидный перекрест . Передний путь перекрещен в спинном мозге.

Корково-мосто-мозжечковый путь перекрещивается в мосту на уровне средних ножек мозжечка. Первые двигательные нейроны находятся в коре лобной, височной, теменной и затылочной долей. Свои аксоны они проводят через внутреннюю капсулу (колено). Вторые нейроны лежат в двигательных ядрах моста и коре полушарий мозжечка. Аксоны из мозжечка выходят через среднюю ножку к двигательным ядрам моста, где переключаются.

Нисходящие экстрапирамидные тракты бессознательных движений относятся к древним путям, и они всегда начинаются в подкорковых структурах мозга . Рефлекторные дуги у них имеют двух нейронный состав и перекресты на разных уровнях мозга. Часть из них проходит только по одной стороне, не образуя перекрестов.

Красноядерно-спинномозговой путь регуляции и координации мышечного тонуса и автоматических мышечных сокращений перекрещивается в среднем мозге.

Преддверно-спинномозговой путь равновесия и координации движений.

Покрышечно-спинномозговой путь зрительно-слуховых безусловных рефлексов.

Оливо-спинальный путь автоматического мышечного тонус а.

Задний продольный пучок - путь координации движений глазных яблок, головы и шеи.

Волокна пучка связывают между собой двигательные ядра III, IV, VI пары черепных нервов и ядра передних рогов спинного мозга шейного и грудного отделов.

    Характеристика пирамидных путей.

Пирамидные Tractus pyramidalis (волевые, сознательные) проводят импульсы от коры к двигательнгым ядрам и далее к мышцам. Их подразделяют на: fibrae corticospinales и fibrae corticonucleares

Fibrae (tractus) corticospinalis

    1 нейрон – гигантская пирамидная клетка (Беца) – нейрон пятого слоя коры прецентральной извилины

    Пути проходят через внутреннюю капсулу в задней ее ножке сразу за коленом.

    В среднем мозге волокна пути располагаются в ножках мозга, в средней их части.

    В области моста – волокна проходят в вентральной части моста

    В продолговатом мозге – в пирамидах.

    На границе со спинным мозгом 85% путей совершают перекрест (decussatio pyramidum), остальные 15% идут в спинной мозг без перекреста и переходят на противоположную сторону в соответствующем сегменте спинного мозга.

    2 нейрон – клетка двигательного ядра переднего рога спинного мозга.

    Аксон второго нейрона проходит в составе переднего корешка, канатика и ветвей спинномозгового нерва к скелетной мышце.

Fibrae (tractus ) corticonuclearis (corticobulbaris )

    1 нейрон - гигантская пирамидная клетка (Беца) пятого слоя коры в прецентральной извилине

    Путь проходит в колене внутренней капсулы

    2 нейрон – клетки соматических двигательных ядер черепных нервов

    Аксон второго нейрона проходит в составе черепного нерва к мышце

    Путь дает ответвления на свою и противоположную сторону, за исключением ядер Х11 и V11 пар черепных нервов

    Характеристика двигательных экстрапирамидных путей.

Экстрапирамидные Пути проводят импульсы к мышцам от подкорковых центров: базальных ядер полушарий, дорзального (зрительного) бугра, красного ядра, черного вещества, ядер оливы, ядер вестибулярного нерва, ретикулярной формации. Экстрапирамидная система автоматически поддерживает тонус скелетной мускулатуры и обеспечивает работу мышц антагонистов. К экстрапирамидным путям относятся: tractus rubrospinalis, tractus tectospinalis, tractus reticulospinalis, tractus olivospinalis, tractus vestibulispinalis. Тракты начинаются в соответствующих подкорковых ядрах (1 нейрон). Аксоны первых нейронов, предварительно совершив переход на противоположную сторону, переключаются на двигательные клетки передних рогов спинного мозга отростки которых заканчиваются в скелетных мышцах. К экстрапирамидной системе относятся и пути корково-мозжечковой корреляции (tractus cortico-ponto – cerebello – dentato – rubro – spinalis.

    Принципиальные морфологические отличия центрального и периферического паралича.

ПАРАЛИЧ - полное выпадение двигательных функций с отсутствием мышечной силы.

Парез – ослабление двигательных функций со снижением мышечной силы.

Паралич и парез развиваются в результате различных патологических процессов (травмы, кровоизлияния и др.) в центральной или периферической части нервной системы.

Центральный паралич

1.Группы мышц поражены диффузно, не бывают поражения отдельных мышц Умеренная атрофия

2.Спастичность с повышением сухожиль­ных рефлексов

3.Разгибательный подошвенный рефлекс, симптом Бабинского

4.Фасцикулярных подергиваний не бы­вает

Периферический паралич

1.Могут быть поражены отдельные мыш­цы

2.Выраженная атрофия, 70-80% от общей массы

3.Вялость и гипотония пораженных мышц с выпадением сухожильных рефлек­сов Подошвенный рефлекс, если вызывает­ся, то нормального, сгибательного типа

4.Могут быть фасцикуляции; при электромиографии выявляют снижение количества двигательных единиц и фибрилляции

    Закономерности в строении чувствительных проводящих путей.

Восходящие, Центростремительные, Афферентные, Чувствительные (…), Сознательные (в кору), рефлекторные.

    Характеристика сознательных афферентных путей.

Проприоцептивные пути коркового направления

Fasciculus gracilis (Goll) и fasciculus cuneatus (Burdach).

    1 нейрон

    Аксон в составе заднего корешка идет к спинному мозгу, не вступая в серое вещество заднего рога, ложится в задние канатики и идет до продолговатого мозга (tractus gangliobulbaris)

    2 нейрон - nucleus gracilis et nucleus cuneati лежит в одноименных бугорках продолговатого мозга

    Аксоны вторых нейронов изгибаясь вентрально и переходя на противоположную сторону, дают начало формированию медиальной петли

(Lemniscus medialis – tractus bulbothalamicus)

    3 нейрон – клетки латерального ядра дорзального (зрительного) бугра

    Отростки третьих нейронов (tractus thalamocorticalis) проходят через заднюю ножку внутренней капсулы и достигают прецентральной и постцентральной извилин (клетки четвертого слоя коры).

    Характеристика рефлекторных афферентных путей.

Проприоцептивные пути мозжечкового направления

Tractus spinocerebellaris anterior (Gowers) et spinocerebellaris posterior (Flechsig)

    1 нейрон – псевдоуниполярная клетка спинномозгового узла

    Дендрит первого нейрона заканчивается рецептором в мышцах, сухожилиях, связках, суставах

    Аксон в составе заднего корешка входит в серое вещество спинного мозга и переключается на тело второго нейрона

    2 нейрон: для Gowersa – nucleus intermediomedialis

для Flechsiga - nucleus thoracicus

    Аксоны второго нейрона пути Gowersa через переднюю белую спайку направляются в боковой канатик противоположной стороны, поднимаются в продолговатый мозг, мост и в верхнем мозговом парусе переходят на противоположную сторону и через верхнюю ножку мозжечка достигают коры червя. Аксоны второго нейрона пути Flechsiga направляются в боковой канатик той же стороны, поднимаются в продолговатый мозг и через нижнюю ножку мозжечка достигают коры червя.

    Медиальная петля.

Пучок волокон белого вещества образованный аксонами тонкого и клиновидного ядер, проводит сознательный проприоцептивные пути и пути общей чувствительности, т.к. к ней присоединяются спиноталамические пути.

    Комиссуральные нервные волокна головного мозга, их строение.

Комиссуральные нервные волокна соединяют аналогичные области двух полушарий. Нервные волокна мозга подразделяются на ассоциативные, комиссуральные и проекционные - все они образуют проводящие пути для нервных импульсов. Ассоциативные волокна соединяют клетки в пределах одного полушария, а в спинном мозге - на уровне одной половины. Комиссуральные волокна связывают правое и левое полушарие, правую и левую половины спинного мозга. Проекционные волокна соединяют выше и нижележащие структуры мозга: клетки коры с клетками ядер и органами. Они подразделяются на восходящие (сенсорные) и нисходящие (двигательные) пути или тракты.

Коммисуральные волокна, входящие в состав так называемых мозговых комиссур, или спаек, соединяют симметричные части обоих полушарий. Самая большая мозговая спайка - мозолистое тело, corpus callosum , связывает между собой части обоих полушарий, относящиеся к neencephalon .

Две мозговые спайки, comissura anterior и comissura inferior , гораздо меньшие по своим размерам, относятся к rhinencephalon и соединяют: comissura anterior - обонятельные доли и обе парагиппокампальные извилины, comissura fornicis - гиппокампы.

Под мозолистым телом находится так называемый свод, forniх , представляющий два дугообразных белых тяжа, которые, в средней своей части, corporis fornicis , соединены между собой, а спереди и сзади расходятся, образуя впереди столбы свода, columnae fornicis , позади - ножки свода, crura fornicis . Crura fornicis , направляясь назад, спускаются в нижние рога боковых желудочков и переходят там в fimbria hyppocampi . Между crura fornicis под splenium corporis callosi протягиваются поперечные пучки нервных волокон, образующие commissura fornicis . Передние концы свода, columnae fornicis , продолжаются вниз до основания мозга, где оканчиваются в corpora mamillaria , проходя через серое вещество hypothalamus . Columnae fornicis ограничивают лежащие позади них межжелудочковые отверстия, соединяющие III желудочек с боковыми желудочками. Впереди столбов свода находится передняя спайка, commissura anterior , имеющая вид белой поперечной перекладины, состоящей из нервных волокон. Между передней частью свода и genu corporis callosi натянута тонкая вертикальная пластинка мозговой ткани - прозрачная перегородка, septum pellucidum , в толще которой находится небольшая щелевидная полость, cavum septi pellucidi .

    Морфологические основы альтернирующего синдрома.

Альтерни́рующие синдромы - синдромы, которые сочетают в себе поражение черепно-мозговых нервов на стороне очага с проводниковыми расстройствами двигательной и чувствительной функций на противоположной стороне.

Они возникают при поражении анатомических составляющих мозгового ствола: ножек мозга – пединкулярные перекрестные синдромы, моста - понтинные, продолговатого мозга – бульбарные. К ним же относится и перекрестная гемиплегия - повреждение перекрещивающегося на разных уровнях мозга пирамидного проводящего пути. Поэтому возникает, например, паралич или парез правой руки и левой ноги при поражениях ниже мозгового ствола. При противоположной гемианестезии повреждаются восходящие пути: спиноталамические и бульботаламические такты, волокна медиальной петли.

Произвольно выполняя то или иное действие, человек не задумывается о том, какую мышцу необходимо включить в нужный момент, не держит в сознательной памяти последовательную рабочую схему двигательного акта. Привычные движения производятся механически, незаметно для внимания, смена одних мышечных сокращений другими непроизвольна и автоматизирована. Двигательные автоматизмы гарантируют наиболее экономное расходование мышечной энергии в процессе выполнения движения. Новый, незнакомый двигательный акт энергетически всегда более расточителен, чем привычный, автоматизированный. Танец артиста балета и игра пальцев музыканта представляют собой наиболее рациональные автоматизированные движения. Совершенствование движений - в их постепенной экономизации, автоматизации, обеспечиваемой деятельностью экстрапирамидной нервной системы.

Экстрапирамидная нервная система принимает участие в регуляции двигательного акта вне пирамидной системы, являясь более древней по сравнению с пирамидной системой в филогенетическом плане. Стриопаллидарная система досталась нам в наследство от существ, более низко стоящих на эволюционной лестнице, - рептилий и птиц. В некоторые возрастные периоды ребенка можно заметить работу паллидарной системы: у недоношенных и доно- шенных детей первых месяцев жизни - осевые движения туловища и ползание (влияние паллидарной системы), и реакция опоры рук, избыточные движения младенцев второго полугодия жизни и старше (влияние стриарной системы).

Процесс обучения какому-либо движению, направленный на автоматизацию двигательного акта, имеет три фазы. Во время I (паллидарной) фазы движения замедлены, осуществляются с длительным сокращением мышц. II фаза (стриарная) характеризуется избыточными по силе, неловкими движениями. III фаза (рационализации движения) заключается в постепенной выработке оптимального для данного индивида энергетически рационального, максимально эффективного (при минимальной затрате сил) способа движения под контролем коры.

Рис. 4.1. Экстрапирамидная система (схема):

1 - двигательная область большого мозга (поля 4 и 6) слева; 2 - корковопаллидарные волокна; 3 - лобная область коры большого мозга; 4 - стриопаллидарные волокна; 5 - скорлупа; 6 - бледный шар; 7 - хвостатое ядро; 8 - таламус; 9 - субталамическое ядро; 10 - лобномостовой путь; 11 - красноядерноталамический путь; 12 - средний мозг; 13 - красное ядро; 14 - черное вещество; 15 - зубчато-таламический путь; 16 - зубчато-красноядерный путь; 17 - верхняя мозжечковая ножка; 18 - мозжечок; 19 - зубчатое ядро; 20 - средняя мозжечковая ножка; 21 - нижняя мозжечковая ножка; 22 - олива; 23 - проприоцептивная и вестибулярная информация; 24 - покрышечно-спинномозговой, ретикулярно-спинномозговой и крас- ноядерно-спинномозговой пути

Экстрапирамидная система

включает следующие структуры (рис. 4.1):

Кора полушарий большого мозга (префронтальный отдел лобных долей, гиппокамп);

Базальные ядра (хвостатое ядро, скорлупа, бледный шар, субталамическое ядро Льюиса);

Ствол мозга (черное вещество, красные ядра, пластинка крыши среднего мозга, ядра заднего продольного пучка Даркшевича, голубое пятно, ретикулярная формация);

Мозжечковая система;

Гамма-мотонейроны спинного мозга;

Нисходящие и восходящие пути.

Афферентные пути из моторной коры заканчиваются в ядрах базальных ядер: хвостатом ядре, полосатом теле, красном ядре, черном веществе и ретикулярной формации. Далее перекрещиваются на вставочные нейроны и через систему эфферентных путей (текто-руброспинальных, ретикуло- и вестибулоспинальных) достигают передних рогов спинного мозга и заканчиваются в альфа-малых и гаммамотонейронах. Часть афферентных путей переключаются в таламусе, и через систему многоканальных кольцевых связей эфферентные пути также доходят до передних рогов спинного мозга.

4.1. Строение и функции стриопаллидарной системы

Стриопаллидарная система разделяется по функциональному значению и морфологическим особенностям на стриатум и паллидум (табл. 3).

Таблица 3. Функциональные и морфологические различия стриатума и паллидума

Никакая другая система не поддается в такой степени внешнему моделирующему влиянию гормонов и нейромедиаторов, как экстрапирамидная, так как функционально она входит в структуру лимбической системы. Именно поэтому энергетический настрой движений человека

зависит от эмоций, и при поражении подкорковых ганглиев выявляются аффективные нарушения (насильственный смех и плач). Функции экстрапирамидной системы.

1. Регуляция мышечного тонуса в комплексе с другими структурами.

2. Регуляция темпа, ритма и пластики любого произвольного двигательного акта.

3. Обеспечение двигательного компонента в регуляции безусловных рефлексов (половой, оборонительный, старт-рефлекс и др.).

4. Обеспечение последовательности двигательного акта.

5. Обеспечение моторного компонента эмоциональной сферы.

6. Регуляция высокоспециализированных движений человека, которые достигли уровня автоматизмов.

4.2. Синдромы поражения стриопаллидарной системы

Поражение паллидума: паллидарный синдром

Симптомокомплекс поражения бледного шара и черного вещества носит название паркинсонизма, акинетико-ригидного синдрома, амиостатического синдрома, гипертонически-гипокинетического синдрома. Он связан с функциональным дефицитом дофамина, с изменением влияния паллидонигральной системы на ретикулярную формацию и нарушением импульсации в корково-подкорково-стволовых нейронных кругах. Ретикулярная формация - стволовой «контролер-регулировщик» потока восходящих и нисходящих импульсов. При нарушении ее связей с черным веществом не препятствует прохождению к мышце избыточных тонических сигналов, вследствие чего развивается мышечная ригид- ность, поддерживаемая непрерывным потоком афферентных импульсов к стриопаллидарной системе. Возникает порочный круг: пораженная паллидарная система шлет бесконтрольные тонические сигналы, которые повышают мышечный тонус и усиливают поток импульсов обратной афферентации.

Основными симптомами поражения бледного шара являются:

изменение мышечного тонуса по пластическому типу, феномен «зубчатого колеса» (сопротивление, испытываемое при исследовании тонуса, нарастает к концу движения), пластическая ригидность;

поза восковой куклы, манекена - феномен каталепсии (при переходе из положения покоя в состояние движения больные часто застывают в неудобной позе);

поза «просителя» - характерный внешний вид больных: туловище слегка согнуто, голова наклонена вперед (рис. 4.2), руки согнуты и

приведены к туловищу, взгляд устремлен вперед, неподвижен;

олигокинезия - бедность и маловыразительность движений; руки при ходьбе неподвижны, отсутствуют нормальные физиологические синкинезии;

брадикинезия - замедленность движений; больные малоподвижны, инертны, скованы;

паркинсоническое топтание на месте - затруднено начало двигательного акта, поэтому вначале каждого движения больной совершает несколько повторных движений, например, раскачивается или шагает на месте;

Иннерционое движение вперед - пропульсия, в сторону - латеропульсия, назад - ретропульсия; выведенный из состояния равновесия больной не

может выровнять его автоматически;

брадилалия - монотонная, замедленная, тихая речь;

брадипсихия - замедление темпа мышления;

микрография - почерк мелкий, нечеткий;

акайрия - «вязкость» в общении, прилипчивость;

«парадоксальные кинезии» - больные, целыми днями сидящие в кресле, в момент аффективных вспышек и эмоционального напряжения могут взбегать по лестнице, прыгать, танцевать;

паркинсонический тремор покоя: чаще локализуется в пальцах кисти - феномен «катания пилюль», «счета монет», тремор головы - феномен «да-да, нет-нет, нет-да»; дрожание наблюдается в покое и уменьшается при произвольных движениях;

положительные постуральные рефлексы: стопный феномен Вестфаля (при пассивном тыльном сгибании стопы возникает тоническое

Рис. 4.2. Поза при паркинсонизме

Рис. 4.3. Атетоз кисти (а-е)

напряжение разгибателей стопы - она застывает в положении тыльного сгибания) и феномен голени (у больного, лежащего на животе с ногами, согнутыми в коленях под прямым углом, при дальнейшем пассивном сгибании голени она застывает в положении сгибания);

Нарушение ритма сон-бодрствование;

Вегетативные расстройства (сальное лицо, шелушение кожи, гиперсаливация).

Поражение полосатого тела: стриарный синдром

При поражении стриарной системы возникает дистонически- гиперкинетический синдром, обусловленный дефицитом тормозящего влияния стриатума на нижележащие двигательные центры, вследствие чего развиваются мышечная гипотония и избыточные непроизвольные движения (гиперкинезы).

Гиперкинезы - автоматические, чрезмерные движения, в которых участвуют отдельные части тела и конечности. Они возникают непроизвольно, исчезают во сне и усиливаются при произвольных движениях и волнении.

Атетоз - медленные, червеобразные, вычурные движения в дистальных отделах конечностей (в кистях и стопах) [рис. 4.3]. Атетоз в мышцах лица сопровождается выпячиванием губ, перекашиванием рта, гримасничаньем, прищелкиванием языком. Обычно атетоз связывают с поражением крупных клеток стриарной системы. Характерным его признаком является образование преходящих контрактур (spasmus mobilis), которые придают кисти и пальцам своеобразное положение.

Баллизм, гемибаллизм - крупные, размашистые, «бросковые» движения конечностей. Чаще всего баллизм затрагивает мышцы рук, вызывая движение в виде взмаха крыла птицы. Насильственные движения при гемибаллизме производятся с большой силой, их трудно прекратить. Возникновение гемибаллизма связывают с поражением льюисова тела, расположенного под зрительным бугром.

Хорея - быстрые сокращения различных групп мышц лица, туло- вища и конечностей. Гиперкинез неритмичен, некоординирован, распространяется на крупные мышцы дистальных и проксимальных отделов. Может напоминать произвольные движения, так как в процесс вовлекаются синергисты. Отмечаются нахмуривание бровей, лба, высовывание языка, порывистые, беспорядочные движения конечностей. Гиперкинез, охватывающий половину тела, называется гемихореей. Хорея возникает при поражении неостриатума и наблюдается при подкорковых дегенерациях, ревматическом поражении мозга, болезни Гентингтона.

В некоторых случаях хореические гиперкинезы сочетаются с атетозом (хореоатетоз). Хореоатетоз может наблюдаться у больных как постоянно, так и в виде приступов - пароксизмальный хореоатетоз. Описано несколько вариантов семейной формы пароксизмального хореоатетоза.

Дистония - насильственные сокращения мышц, приводящие к «выкручиванию», переразгибанию части тела. Выделяют спастическую кривошею (локальную дистонию мышц шеи), при которой голова повернута в сторону и наклонена к плечу (рис. 4.4). Возможны также непроизвольные наклоны головы вперед или назад. В начале заболевания напряжение мышц бывает преходящим, однако со временем оно становится постоянным, вследствие чего голова все время находится в неестественном положении. Спастическая кривошея нередко возникает в начальных стадиях торсионной дистонии в качестве локального ее проявления. Торсионная дистония является

Рис 4.4. Кривошея

генерализованным вариантом гиперкинеза. Движения туловища носят вращательный, штопорообразный характер, сопровождаются гиперлордозом, сколиозом, вычурными позами. Торсионная дистония может прекращаться при различных компенсаторных приемах, например при обхвате руками шеи, усиленном повороте плеча и т.д. Выделяют также дистонию других групп мышц.

Писчий спазм (графоспазм) - судорожное сокращение пальцев кисти, которое появляется во время письма.

Профессиональные судороги - спазм мышц, участвующих в определенных профессиональных движениях. Наблюдаются у скрипачей, пианистов, гитаристов, машинисток и т.д.

Лицевой гемиспазм - периодически повторяющиеся судороги мышц половины лица, иннервируемых лицевым нервом. Судороги сопровождаются появлением морщин на лбу, угол рта оттянут кнаружи и кверху, платизма напряжена.

Лицевой параспазм Мейджа - периодически повторяющиеся симметричные судороги лицевых мышц. Параспазм часто возникает во время разговора, улыбки.

Блефароспазм - судорожные сокращения круговой мышцы глаза. Клинически блефароспазм проявляется частым миганием, возникает пароксизмально.

Икота - клонические судороги диафрагмы. Проявляется быстры- ми громкими вдыхательными движениями, обусловлена патологическим процессом в оболочках или в веществе мозга, интоксикацией.

Миоклонус - быстрый гиперкинез, который выглядит как вздра- гивание. Выделяют локальный миоклонус (например, конечности) и генерализованный. Следует также отличать неэпилептический миоклонус (гиперкинез) от эпилептического миоклонуса.

Тики - быстрые клонические подергивания ограниченной группы мышц, как правило, стереотипного характера, имитирующие произвольные движения. Чаще локализуются в мышцах лица и проявляются быстрым наморщиванием лба, поднятием бровей, миганием, высовыванием языка. Тик шейных мышц сопровождается поворотом головы в сторону, киванием. У детей тик нередко развивается как проявление невроза в результате образующегося патологического условного рефлекса, как подражание лицам, страдающим гиперкинезами. Тик лицевой мускулатуры может возникнуть при невралгии тройничного нерва. Тики могут вовлекать мышцы конечностей, туловища, диафрагмы. Особое место занимает генерализованный импуль-

сивный тик - синдром де ля Туретта, при котором наблюдаются импульсивные подпрыгивания, приседания, гримасничанье, вокальные феномены в виде похрюкивания, вскриков, выкрикивания бранных слов (копролалия).

Дрожание (тремор) - стереотипный клонический ритмичный гиперкинез, преимущественно наблюдающийся в кистях рук, стопах; может также отмечаться дрожание туловища, головы. Дрожание - внешнее проявление нередко невидимого сокращения мышц в результате поражения сегментарных и надсегментарных двигательных структур, прежде всего стриопаллидарной системы и мозжечка. Амплитуда дрожания и его частота, длительность отдельных фаз могут быть различными в зависимости от механизма возникновения. Различают крупноразмашистый, «рубральный» тремор, возникающий при поражении красного ядра и захватывающий противоположную половину тела. Тремор может усиливаться или исчезать при движении. Интенционный тремор резко усиливается или возникает при выполнении целенаправленных движений, в частности при выполнении координаторных проб - пальце-носовой и пяточно-коленной. Статический тремор наблюдается в покое, при движениях не усиливается (напротив, может уменьшаться), характерен для паркинсонизма.

4.3. Мозжечок и расстройства координации движений

Важнейшими чертами двигательного акта являются точность и целенаправленность движения. Координирующий аппарат контро- лирует равновесие тела, стабилизирует центр тяжести, регулирует согласованную деятельность мышц-антагонистов, обеспечивающих сгибание, разгибание и пр. Координация движений требует четкой и непрерывной обратной афферентации, информирующей о взаимоположении мышц, суставов, о нагрузке на них, о ходе выполнения траектории движения.

Центром координации движений является мозжечок, который состоит из двух полушарий, червя и трех пар ножек, образован- ных афферентными и эфферентными мозжечковыми путями. Также координация движений обеспечивается деятельностью корковых центров, всей экстрапирамидной системы, афферентных и эфферентных путей.

Афферентные пути направляются в мозжечок от проприоцепторов мышц, вестибулярного аппарата, ретикулярной формации и некото- рых других отделов. Сигналы сенситивной проприоцепции поступают

в мозжечок от ядер Голля (тонкого) и Бурдаха (клиновидного) через нижние ножки мозжечка к ядрам шатра своей стороны. Все импульсы, поступающие в мозжечок по перечисленным афферентным каналам, обрабатывают ядра шатра. Получив разрозненную информацию из различных источников, они посылают ее к клеткам Пуркинье для переработки, распределяя согласно соматотопической проекции. В коре мозжечка руки представлены в передних отделах полушарий, ноги - в задних; в коре червя представлены голова, шея (в передних отделах), туловище (в задних отделах).

Клетки Пуркинье переводят все «разноголосые» сигналы, поступающие из ядер шатра, в единую «мозжечковую тональность». Информация, поступившая в кору мозжечка, переработанная, закодированная единым «мозжечковым» шифром, передается затем зубчатым ядрам, обязанным распределить ее и разослать в нужные эфферентные аппараты.

Собственно мозжечковая проприоцепция проводится по заднему и переднему спинно-мозжечковым путям (Флексига и Говерса). Импульсы от проприоцепторов, сигнализирующие о положении тела в пространстве, идут к спинномозговым узлам, где лежат первые нейроны, аксоны которых поступают через задние корешки в спинной мозг. В основании задних рогов спинного мозга и в средней части его серого вещества лежат вторые нейроны, от которых и начинаются спинно-мозжечковые пути. Задний спинно-мозжечковый путь (Флексига) проходит, не перекрещиваясь, в задней части бокового канатика до продолговатого мозга и в составе нижних ножек достигает червя мозжечка. Передний спинно-мозжечковый путь (Говерса) после перехода на противоположную сторону располагается в боковых канатиках, вентрально от пучка Флексига, проходит спинной, продолговатый мозг, в вентральной части моста мозга вновь перекрещивается и в составе верхних ножек направляется в червь мозжечка. Таким образом, путь Говерса дважды совершает перекрест: в спинном мозге и в переднем мозговом парусе.

Пути от медиального вестибулярного ядра (ядра Бехтерева), ядер ретикулярной формации подходят к своей стороне в нижних ножках. Нижние оливы продолговатого мозга функционально наиболее тесно связаны с мозжечком, поэтому оливомозжечковые пути, проходящие в нижних ножках, поступают непосредственно в кору мозжечка, минуя ядро шатра.

Таким образом:

Основные афферентные пути подходят к мозжечку, не перекрещиваясь или перекрещиваясь дважды (путь Говерса), благодаря

чему каждое полушарие мозжечка получает информацию от своей половины тела;

Основной канал поступления афферентных сигналов - нижние ножки мозжечка (исключение составляет путь Говерса, входящий в мозжечок по верхним ножкам);

Основной «пункт приема» пучка афферентных сигналов - ядро шатра.

Особые афферентные пути нисходят к мозжечку из коры полушарий большого мозга и прерываются в собственных ядрах моста: от лобной доли - фронтопонтоцеребеллярный, от затылочной и височной - окципитотемпоропонтоцеребеллярный. Посредством этих путей кора полушарий большого мозга вносит свою корригирующую лепту в координацию движений на основании информации, поступившей в корковые центры зрения, слуха и других органов чувств. Кортико-церебеллярные пути входят в мозжечок в составе средних ножек, заканчиваются в коре мозжечка, минуя ядро шатра.

Кортико-церебеллярные пути

Шестинейронный путь связывает кору больших полушарий с ядрами передних рогов спинного мозга.

Первые нейроны лобного пути находятся в верхней и средней лобных извилинах. Его аксон проходит полуовальный центр, переднюю ножку внутренней капсулы, внутренний отдел основания ножек мозга и заканчивается в собственных ядрах моста своей стороны. Первый нейрон затылочно-височного пути находится в задних отделах височных извилин и затылочной области коры. Его аксон проходит через заднюю часть задней ножки внутренней капсулы в наружную часть основания ножек мозга и заканчивается также в собственных ядрах моста своей стороны.

Вторые нейроны (понтоцеребеллярный путь) находится в собственных ядрах моста, а их аксоны, предварительно перекрещиваясь в основании моста, идут в средних ножках к коре мозжечка. Клетки Пуркинье являются третьими нейронами. Таким образом, полушария большого мозга связаны с противоположными полушариями мозжечка. Далее от третьего нейрона эфферентные от коры мозжечка импульсы идут к четвертому нейрону в зубчатое ядро, а затем к пятому нейрону в красное ядро, после которого происходит второй перекрест. Затем аксоны спускаются вниз, заканчиваясь в альфа-малых мотонейронах передних рогов спинного мозга (шестой нейрон).

Как денторубральный, так и руброспинальный пути совершают перекресты (Вернекинга и Фореля), поэтому при поражении полу- шарий мозжечка расстройства координации возникают на стороне очага.

Красные ядра отдают волокна не только к спинному мозгу, но и к зрительному бугру, откуда импульсы поступают в стриопаллидум и кору полушарий большого мозга. Обратные эфферентные сигналы от стриопаллидарной системы проходят к мускулатуре через руброспинальные, вестибулоспинальные, тектоспинальные, ретикулоспинальные пути, а также через задний продольный пучок - к мышцам глаза.

Мозжечок имеет и собственные связи с вестибулярной системой и ретикулярной формацией. Пути к латеральному вестибулярному ядру (Дейтерса) и ядрам ретикулярной формации идут от ядра шатра червя мозжечка по нижним ножкам. Здесь же проходит нисходящий путь от мозжечка к нижней оливе (см. рис. 1.6 и 4.1).

4.4. Синдромы поражения мозжечка и его связей

Нейроны мозжечка способны немедленно реагировать на изменение задачи или окружающей среды. При повреждении мозжечка обучение новым двигательным навыкам чрезвычайно затрудняется, а при выполнении ранее знакомых движений появляется нарушение координации в конечностях относительно друг друга и туловища. В конечном счете развивается атаксия.

Триада симптомов поражения мозжечка включает:

Мозжечковую атаксию (статическую и динамическую);

Мышечную атонию;

Асинергию.

Также при поражении мозжечка отмечаются:

Гиперметрия;

Промахивание;

Адиадохокинез;

Интенционный тремор;

Нистагм, опсоклонус;

Расстройства речи.

При поражении червя мозжечка утрачиваются синергии, стабилизирующие центр тяжести. Вследствие этого теряется равнове- сие, наступает туловищная статическая атаксия на фоне диффузной мышечной гипотонии. Больной ходит, широко расставляя ноги, пошатываясь, что особенно выражено при поворотах. Контроль зре-

ния не уменьшает атаксии. При поражении передней части червя мозжечка больной при стоянии падает вперед, при поражении задней части червя - назад, плохо удерживает голову (рис. 4.5).

При поражении полушарий мозжечка преобладают динамическая атаксия конечностей, атактическая походка с отклонением в сторону пораженного полушария, интенционное дрожание, промахивание, гиперметрия (рис. 4.6), нистагм, адиадохокинез, асинергия, гипотония на стороне очага, «скандированная речь».

Атаксия - это недостаток координации при выполнении произвольных движений. Она может проявляться в виде неуклюжести, неаккуратности или неустойчивости. Движения неплавны и кажутся не связанными между собой. Атаксия может затрагивать любую часть тела.

Атаксия рук: при выполнении движений, требующих особой тщательности, возникает тремор; промахивание мимо цели (мимопопадание); нарушается точность выполнения повторных движений (например, хлопанье) - дисдиадохокинез.

Атаксия ног вызывает неустойчивость туловища с тенденцией к падению. Компенсаторно развивается своеобразная походка, напоминающая походку «пьяного», при которой стопы ставятся шире расстояния между бедрами.

Нарушения равновесия проявляются падениями спонтанными: или при изменении направления движения или толчке извне.

Рис. 4.5. Поза Ромберга для выявления статической атаксии

Рис. 4.6. Пальценосовая проба для выявления динамической атаксии

Атаксия речевого аппарата проявляется «скандированной речью». При этом голос становится монотонным, часто сопровождается звуками придыхания, необычным темпом или паузами между слогами.

Атаксия глаз характеризуется отсутствием быстрых движений при слежении за определенным объектом - нистагмом. При внимательном исследовании можно заметить «промахивание глазами», когда предмет теряется из виду, а затем «подхватывается».

Нарушение равновесия при стоянии и ходьбе называется статиколокомоторной атаксией, нарушение координации двигательных актов - динамической атаксией.

Выделяют несколько видов атаксий в зависимости от топографии очага.

Сенситивная атаксия. Возникает при поражении задних канатиков спинного мозга и других отделов, где проходят пути глубокой чувствительности. Большую компенсирующую роль играет контроль зрения за положением тела: как только больной закрывает глаза, он начинает пошатываться и может упасть. Походка «штампующая».

При вестибулярной атаксии нарушение равновесия сопровождается головокружением, тошнотой, рвотой.

При поражении мозжечка (особенно червя) возникают грубые нарушения статики. В наиболее тяжелых случаях больной не может сидеть или стоять даже с широко расставленными ногами, отклоняется вперед или назад. При поражении полушарий мозжечка он отклоняется больше в сторону очага поражения. В отличие от спинальной атаксии при мозжечковой атаксии контроль зрения не помогает. У больного равновесие нарушается как при открытых, так и при закрытых глазах.

При поражении коры полушарий большого мозга (лобных, височных, затылочных долей) также развиваются нарушения статики. При поражении коры полушарий больной в позе Ромберга неустойчив, с тенденцией к падению в противоположную очагу сторону. Корковая атаксия обязательно сопровождается особенностями поведения, например «лобной психикой». Крайняя степень корковой атаксии называется астазия-абазия - больной не в состоянии принимать вертикальную позу из-за утраты навыка удерживать равновесие в пространстве.

Мозжечковые расстройства сопровождаются мышечной гипотонией: мышцы дряблые, вялые, объем движений в суставах увеличен.

Нарушение координации активности отдельных мышц или их групп, участвующих в данном движении, называют асинергией. Например, больной не может ползать на четвереньках из-за невозможности четко координировать движения контралатеральных рук и ног, не может сесть со скрещенными руками, так как ноги поднимаются выше головы - асинергия Бабинского.

Речь больных теряет плавность, становится замедленной, скандированной, разорванной на слоги, больной говорит с видимым усилием, делая ударение на каждом слоге (нарушение координации движений речедвигательного аппарата - мозжечковая дизартрия).

Нистагм (ритмическое подергивание глазных яблок) при пораже- нии мозжечка крупноразмашистый, быстрая фаза его направлена в сторону очага. Нистагм усиливается при взгляде в сторону очага и уменьшается при закрывании глаз, чаще бывает горизонтальным; рассматривается при поражении мозжечка как интенционный тремор глазных яблок.

Опсоклонус - двигательное расстройство, характеризующееся быстрыми хаотическими движениями глаз, часто сопровождается быстрыми подергиваниями бровей.

Характерно также расстройство почерка. Вследствие дрожания и нарушения координации тонких движений почерк становится неровным, буквы - слишком крупными (мегалография).

Сознательное сокращение мышц обеспечивает пирамидная система. Однако, выполняя то или иное произвольное движение, человек не задумывается над тем, какие мышцы необходимо сократить в данный момент. Обычные движения, осу­ществляемые благодаря согласованному действию многих мышц, выполняются автоматически, незаметно для внимания, а из­менение одних мышечных сокра­щений другими непроизвольно. Наиболее совершенными явля­ются автоматизированные движе­ния. Они энергетически скупые, оптимальные по объему, времени, затратам энергии. Последовательность, продолжительность мышечных сокращений, совершенство движений обеспечивает экстрапирамидная система, которая по сравнению с пирамидной системой, является более древним в филоге­нетическом отношении моторно-тоническим аппаратом. Экстрапирамид­ная система создает предпосылки для выполнения двигательных реакций, фон, на котором осуществляются быстрые, точные, дифференцированные движения, готовит мышцы к действию, обеспечивает соответствующее рас­пределение тонуса между различными группами мышц. Экстрапирамидная система принимает непосредственное участие в формировании определен­ной позы человека, двигательных проявлений эмоций, создает индивиду­альное выражение человеческих движений. Она обеспечивает выполнение автоматизированных, заученных двигательных стереотипных актов, а так­же, безусловно-рефлекторных защитных движений.

1 - кора большого мозга; 2 - хвостатое ядро; 3 - скорлупа; 4 - бледный шар; 5 - таламус; 6 - боковое преддверное ядро; 7 - ретикулярная формация; 8 - крыша среднего мозга; 9 - ядро Даркшевича (медиального продольного пучка); 10 - черное вещество; 11 - красное ядро; 12 - субталамическое ядро (Luysi); 13 - нисходящие стволово-спинномозговые пути.

К экстрапирамидной системе относятся многочисленные клеточные структуры, расположенные в головном и спинном мозге, а также их афферентные и эфферентные пути.

В экстрапирамидной системе можно выделить четыре уровня:

  • корковые образования - премоторные зоны полушарий головного мозга;
  • подкорковые (базальные) ядра: хвостатое ядро и чечевицеобразное ядро, состоящее из скорлупы, медиального и латерального бледного шара;
  • основные стволовые структуры: черное вещество, красные ядра, сет­чатое образование, субталамическое ядро, ядро медиального продольного пучка (Даркшевича), вестибулярные ядра, крыша среднего мозга;
  • спинальный уровень представлен нисходящими проводящими путя­ми, заканчивающимися около клеток передних рогов спинного мозга. Далее экстрапирамидные влияния направляются к мышцам через систему альфа-и гамма-мотонейронов.

В эволюционном плане по морфологическим и функциональным осо­бенностям экстрапирамидную систему разделяют на две части - неостриарную и паллеостриарную (или паллидонигральную). К неостриарной системе (неостриатум) относятся корковые структуры, хвостатое ядро и скорлупа. Паллеостриарную систему составляют латеральный и меди­альный бледный шар, черное вещество, субталамическое ядро, ядро меди­ального продольного пучка, вестибулярные ядра, крыша среднего мозга и некоторые другие структуры. Неостриарную и паллеостриарную системы, функционирующих согласованно и уравновешивающих друг друга, условно объединяют в стриопаллидарную систему. Неостриарная система является более молодой, чем паллеостриарная, как в филогенетическом, так и в онтогенетическом отношении. Ее считают высшим подкорковым регуляторно-координационным центром организации движений, могучим тормозным регулятором моторной системы. Она тормозит паллеостриарную систему, которая активирует двигательную функцию.

Базальные ядра являются основными структурами экстрапирамидной системы. Они имеют большое количество связей с другими отделами нерв­ной системы, обеспечивающими включение экстрапирамидных аппаратов в систему произвольных движений. Афферентные волокна несут информа­цию от таламуса, мозжечка, сетчатого образования. К неостриарной систе­ме поступают афферентные связи от многих отделов коры большого мозга, особенно от двигательных зон лобной доли. Нисходящие импульсы от экс­трапирамидной системы через структуры среднего и продолговатого мозга (красные ядра, вестибулярные ядра, сетчатое образование, пластинку четве­рохолмия, двигательные ядра черепных нервов) поступают на сегментарные аппараты, координируя тонус и двигательную активность мышц.

Функции экстрапирамидной системы осуществляются благодаря на­личию в ее структурах нейротрансмиттеров. В черном веществе содержатся нейроны, вырабатывающие дофамин, который здесь формируется в грану­лы. Дофамин по допаминергическому нигростриарному пути поступает в хвостатое ядро, где высвобождается в синаптических аппаратах. Дофамин тормозит функцию хвостатого ядра, блокируя выработку стриарными холинергическими нейронами медиатора возбуждения ацетилхолина. Таким образом, дофамин уменьшает тормозное влияние хвостатого ядра на мото­рику. Дофамин поступает и в лимбические структуры, гипоталамус, лобную долю головного мозга, обеспечивая контроль за настроением, поведением, началом двигательных актов. Уменьшение его содержания в этих струк­турах приводит к усилению тормозных влияний хвостатого ядра на двига­тельную активность с возникновением гипо- или акинезии, эмоциональных расстройств. Кроме того, в хвостатом ядре вырабатывается тормозной ме­диатор гамма-аминомасляная кислота (ГАМК), которая по гамкергическому стрионигральному пути передается в черное вещество и контролирует синтез дофамина. В структурах экстрапирамидной системы есть и другие нейротрансмиттеры - норадреналин, серотонин, глутаминовая кислота, нейропептиды. Функция всех медиаторных систем в норме сбалансирована, между ними существует равновесие. При его нарушении возникают различ­ные патологические клинические синдромы.

Поражение черного вещества и дегенерация нигростриарного пути при­водят к уменьшению синтеза и количества дофамина, что клинически про­является картиной гипертонически-гипокинетического синдрома, или паркинсонизма. Такое название синдром получил от имени английского врача Джеймса Паркинсона (J. Parkinson, 1755-1824), который в 1817 г. опи­сал наследственную болезнь с ригидностью мышц, акинезией и тремором, в дальнейшем получившую название болезни Паркинсона. Подобная симпто­матика возникает также после черепно-мозговой травмы, отравления угар­ным газом, марганцем, после перенесенного летаргического энцефалита и по другим причинам. В таких случаях ее называют паркинсонизмом, указывая этиологию (токсический, постэнцефалитический, посттравматический и др.). При развитии паркинсонизма уменьшается действие дофамина на хвостатое ядро, которое в результате нарастания холинергической активности растормаживается и усиливает свое тормозное влияние на моторную деятельность. Возникают гипокинезия, ригидность мышц и статическое дрожание (тремор). Гипокинезия или акинезия (бедность движений) проявляются совокупностью симптомов - гипомимией, редким миганием, монотонностью речи (брадилалия), микрографией, исчезновением содружественных движений, особенно в руках во время ходьбы (ахейрокинез), снижением общей двигательной актив­ности, инициативы движения, нарушением процесса включения в движение. В таких случаях больные во время движений будто замирают, не могут сразу начать ходьбу, топчутся на месте. При ходьбе не могут сразу остановиться. Походка замедленная, мелкими шагами, шаркающая, со склонностью к уско­рению. Во время ходьбы вперед больной не может внезапно остановиться, туловище как будто опережает нижние конечности, нарушается равновесие и больной может упасть. Такое явление носит название пропульсии. Так же больной не может внезапно остановиться во время ходьбы назад (ретропульсия) или в сторону (латеропульсия).

Ригидность мышц, возникающая при паркинсонизме, характеризуется повышением мышечного тонуса равномерно во всех группах мышц, по типу воскообразной или пластической ригидности. При проведении пассивных движений в конечностях иногда наблюдается своеобразная прерывистость, ступенчатость растягивания мышц, получившая на­звание симптома "зубчатого колеса". Общая скован­ность, повышение мышечного тонуса обусловливают характерную позу больного: голова наклонена впе­ред, туловище согнуто, руки согнуты в локтевых суставах (поза просителя).

Дрожание имеет мелкоритмичный характер, с частотой 4-5 колебаний в 1 с, возникает в покое, усиливается при волнении, уменьшается или исче­зает во время сна и произвольных движений. Сна­чала дрожание появляется в кисти одной руки (типа "счета монет" или "скатывания пилюль", "флексия-экстензия" пальцев). При прогрессировании болезни оно распространяется по гемитипу, охватывает голо­ву (типа "да-да") или приобретает генерализованный характер. Часто возникают вегетативные нарушения в виде повышенного слюноотделения, сальности кожи, избыточной потливости, задержки опо­рожнения кишечника. У большинства больных с паркинсонизмом наблю­даются нарушение психики по типу безынициативности, вялости, характер­ная своеобразная вязкость, назойливость, склонность к повторению одних и тех же вопросов, депрессия, на поздних стадиях болезни может возникать деменция (слабоумие).

Иногда у больных с паркинсонизмом отмечаются парадоксальные кинезии, когда они временно благодаря непродолжительному снижению мышеч­ного тонуса могут быстро выполнять произвольные движения (танцевать, кататься на коньках и т. д.). Такой феномен, еще не нашедший окончатель­ного объяснения, может наблюдаться после пробуждения, во время стрессо­вых ситуаций. Для больных с паркинсонизмом характерно возникновение так называемой фиксационной ригидности, которая приводит к усилению тонических постуральных рефлексов (рефлексов положения). Суть их за­ключается в том, что нарушается возвращение к исходной позиции части тела после выполненного движения. Так, в результате повышения пластиче­ского тонуса в мышцах шеи и проксимальных отделах верхних конечностей, поднятая врачом голова больного, лежащего на спине, будто застывает в таком положении, а потом медленно опускается (симптом «воздушной по­душки»). Пассивно согнутая в коленном суставе нога больного, лежащего на животе, остается в таком положении и после прекращения раздражения, и медленно опу­скается. После резкого пассивного тыльного сгибания стопы, она некоторое время сохра­няет это положение.

Для выявления скрытой экстрапирамид­ной мышечной гипертонии используют про­бу Нойка-Ганева. При проверке мышечного тонуса в верхней конечности путем пассив­ных движений в локтевом суставе предлага­ют больному поднять ногу. Одновременное поднятие нижней конечности приводит к по­вышению тонуса в мышцах руки.

Коррекция медиаторных сдвигов при паркинсонизме проводится с ис­пользованием антихолинергических препаратов (циклодол, паркопан, амизил) и средств, стимулирующих дофаминергическую передачу (L-Dopa, синемет, наком, мадопар, парлодел, юмекс, мидантан, симетрел и др.).

Симптомокомплекс поражения неостриарной системы и ее связей при­водит к чрезмерному "облегчению" движений, вследствие чего возникает гиперкинетически-гипотонический синдром. Основными ^проявлениями этого синдрома являются эктрапирамидные гиперкинезы - разнообразные не­произвольные, насильственные движения, диффузные или в определенном участке тела, которые сочетаются с гипотонией или атонией мышц.

Разновидностями экстрапирамидных гиперкинезов являются хорея, атетоз, торсионная дистония, гемибаллизм, миоклония, тик. Хорея характеризуется полиморфными, быстрыми, неритмичными, беспорядочными насильственны­ми движениями в различных группах мышц, которые усиливаются при волне­нии и исчезают во сне. Подергивание мышц лица приводит к появлению гри­мас, конечностей - к жестикуляции. Возникает нарушение походки (больной будто танцует), речи, письма. Пациент не может удержать высунутый язык из-за гиперкинезов языка, иногда его прикусывает, особенно при одновременном плотном закрывании глаз. При значительной мышечной гипотонии (chorea mollis) не вызываются рефлексы, возникают псевдопарезы. Если мышечный тонус в конечностях снижен незначительно, сухожильные рефлексы сохраня­ются. Можно наблюдать симптом Гордона-2 . При вызывании коленного реф­лекса из-за тонического напряжения четырехглавой мышцы бедра разогнутая голень на какой-то миг будто застывает в разогнутом положении, а также может выполнять несколько маятникообразных, постепенно затухающих движений (симптом маятника). Хореические гиперкинезы наблюдаются при хорее Гентингтона, малой хорее (хорея Сиденгама), хорее беременных.

Атетоз возникает в результате то­нической судороги в мышцах и характеризуется насильственными медленными, червеобразными движениями в дистальных отделах конечностей с тенденцией к их переразгибанию, а также в мышцах лица, языка. Типич­ный атетоз пальцев рук, когда каждый палец осуществляет медленные вы­чурные движения самостоятельно, независимо от других. Атетоз в мышцах лица приводит к появлению разнообразных гримас, в языке - к неразборчивой речи. Атетоз возникает вследствие перенесенной в пренатальном периоде нейроинфекции, при асфиксии плода или несоответствии резус-фактора матери и плода.

Торсионная дистопия - это тонические спазмы различных мышечных групп, преимущественно туловища, проявляющиеся во время ходьбы. Гиперкинезы вычурные, нередко вращательные вокруг продольной оси тела (штопорообразные). У таких больных из-за неравномерного напряжения мышц возникает ис­кривление позвоночника. Начало торсионной дистонии может проявиться в виде кривошеи, так как раньше всего поражаются шейные мышцы.

Гемибаллизм - это, как правило, неритмичные, односторонние, грубые, крупноразмашистые движения конечностей, чаще верхней. Напоминают взмах крыла птицы. Возникает чаще при сосудистой патологии в субталамическом ядре (тело Льюиса).

Миоклония - короткие молниеносные клонические подергивания от­дельных мышц или их групп, настолько быстрые, что при этом может не происходить перемещения конечностей в пространстве. Иногда у больных с миоклонией возникают генерализованные судорожные приступы, сопрово­ждающиеся деменцией (миоклонус-эпилепсия). Миоклония возникает при патологии мозжечково-красноядерных связей нижней оливы, неостриатума. Если миоклония постоянная, стереотипная, имеет четкую локализацию, ее называют миоритмией. Чаще возникает в мышцах лица, языка, глотки, мягкого нёба, диафрагмы.

Тик - быстрое сокращение отдельных мышечных групп, создающее раз­личные, как правило, стереотипные движения. Страдают мышцы шеи и лица. Больной подергивает шеей, будто поправляет воротничок; отбрасыва­ет назад голову, словно поправляет волосы, поднимает плечо, осуществляет мигательные движения, морщит лоб, поднимает и опускает брови. В отли­чие от невротического, функционального непостоянного тика экстрапира­мидный тик отличается постоянством и стереотипностью.

Большинство гиперкинезов, обусловленных поражением экстрапира­мидной системы, во время сна исчезают, а при волнении и произвольных движениях усиливаются.

По клинике гиперкинетически-гипотонический синдром как будто противоположный синдрому паркинсонизма. Этот антагонизм является результатом возникновения противоположных медиаторных сдвигов. Так, при наследственном заболевании - хорее Гентингтона - в неостриарной системе выявлено уменьшение количества ацетилхолина и ГАМ К, а также ферментов, отвечающих за их синтез. Количество дофамина при этом уве­личено. Поэтому для лечения больных с хореей Гентингтона используют средства, подавляющие дофаминергическую передачу - резерпин, амина­зин, галоперидол, препараты лития.

При исследовании функций экстрапирамидной системы оценивают дви­жения и позу больного, мимику, выразительность речи, проверяют мышеч­ный тонус, выявляют гиперкинезы, нарушение психоэмоциональной сферы и вегетативные расстройства.

ЭКСТРАПИРАМИДНАЯ СИСТЕМА (systema extrapyramidale) - система ядер головного мозга и двигательных внепирамидных (экстрапирамидных) проводящих путей, осуществляющая непроизвольную, автоматическую регуляцию и координацию сложных двигательных актов, регуляцию мышечного тонуса, поддержание позы, организацию двигательных проявлений эмоций.

Экстрапирамидная система в отличие от пирамидной системы (см.) не является строго очерченной анатомической и функциональной системой. Она объединяет некоторые отделы коры головного мозга (см.), базальные ядра (см.), ядерные образования мозгового ствола (см. Головной мозг), мозжечок (см.), сегментарный аппарат спинного мозга (см.), а также обширные коммуникации, осуществляющие мгновенную функциональную интеграцию многих нейрональных систем, обеспечивающих сложную организацию двигательных и поведенческих актов.

Анатомия

Экстрапирамидная система включает полосатое тело (corpus striatum), состоящее из хвостатого ядра (nucleus caudatus) и чечевицеобразного ядра (nucleus lenticularis), медиальные ядра таламуса (nuclei mediales thalami), субталамическое ядро (nucleus subthalamicus, s. corpus Luysi), ядра гипоталамуса (nuclei hypothalamici), черное вещество (substantia nigra), красное ядро (nucleus ruber), ядра ретикулярной формации (nuclei formationis reticularis), оливу (oliva) продолговатого мозга. Хвостатое ядро состоит из головки (caput), тела (corpus) и хвоста (cauda); чечевицеобразное ядро - из скорлупы (putamen), бледного шара (globus pallidus), медиальной и латеральной мозговых пластинок (laminae medullares medialis et lateralis). В экстрапирамидную систему входят также двигательные экстрапирамидные проводящие пути: корковые пути, берущие начало от нейронов коркового двигательного поля 4 и нейронов, расположенных в соматосенсорных корковых полях, связывающие кору полушарий головного мозга с образованиями экстрапирамидной системы; стриопаллидарные пути, соединяющие образования экстрапирамидной системы между собой; трункоспипальные пути, идущие от перечисленных двигательных ядер головного мозга к двигательным ядрам спинного мозга и черепно-мозговых нервов. К экстрапирамидной системе относят и мозжечок.

Экстрапирамидная система представляет собой филогенетически старую систему. Конечный мозг низших позвоночных не имеет коры, а клеточные скопления, образующие базальные ядра, залегают в его глубине. Экстрапирамидная система низших позвоночных является высшим отделом, принимающим сигналы от органных рецепторов и посылающим импульсы к мышцам через центры спинного мозга. У рыб из образований экстрапирамидной системы имеется только бледный шар чечевицеобразного ядра, у амфибий появляется скорлупа этого ядра. У рептилий и птиц с развитой корой головного мозга образуются новые базальные ядра (например, хвостатое ядро), но сохраняются непрямые нисходящие пути от этих ядер. В то же время прямая связь между корой головного мозга и спинным мозгом у них отсутствует. Только у млекопитающих помимо экстра пирамидных появляются и прямые нисходящие пирамидные двигательные пути от коры головного мозга к двигательным центрам спинного мозга.

На основании данных о развитии базальных ядер в экстрапирамидной системе выделяют ее ядерную часть - стриопаллидарную систему, при этом хвостатое ядро и скорлупу чечевицеобразного ядра объединяют под названием «стриатум» (striatum), или «неостриатум», а бледный шар обозначают как паллидум (pallidum). К системе паллидума относят также черное вещество и красное ядро (см. Средний мозг). Стриатум - филогенетически более молодое образование, чем паллидум. Образования стриопаллидарной системы связаны между собой стриопаллидарными проводящими путями (см. Двигательные центры, пути).

Физиология

Основные физиологические функции экстрапирамидной системы обеспечивают координацию двигательных актов человека и животных, регуляцию мышечного тонуса и поддержание позы, организацию двигательных проявлений эмоций. Сложность строения экстрапирамидной системы, обширность связей ее структур с различными образованиями головного мозга делают трудным понимание физиологических механизмов экстрапирамидной регуляции двигательных актов. В отличие от пирамидной системы (см.) экстрапирамидная система не разделяется па отдельные пути, а представляет собой сложную систему двигательных ядер и связей между ними, а также связей двигательных центров различных функциональных уровней головного мозга с эфферентными нейронами спинного мозга (см.) и ядрами черепно-мозговых нервов через многочисленные подкорковые и стволовые структуры. В спинном мозге импульсы, поступающие по нисходящим пирамидному тракту и волокнам экстрапирамидной системы, взаимодействуют с возбуждениями, приходящими по афферентным путям от пропроирецепторов. Процесс интеграции возбуждений на уровне спинного мозга является важным звеном в механизме не только произвольных, но и непроизвольных. Начало экстрапирамидной системы дают преимущественно аксоны нейронов коркового двигательного поля 4, а также нейроны, расположенные в соматосенсорной коре. Вместе с тем многие волокна экстрапирамидной системы начинаются и в других сенсорных областях коры (слуховой, зрительной и вкусовой) и в ассоциативных зонах лобной, теменной и височных долей мозга (см. Кора головного мозга). От клеток коры головного мозга импульсы по экстралирамидным путям направляются к нейронам таламуса (см.), гипоталамуса (см.), моста головного мозга (см.), красных ядер, черного вещества и ретикулярной формации (см.). От поля 4 экстрапирамидные волокна вместе с волокнами пирамидного тракта идут в составе внутренней капсулы к наиболее древним группам двигательных ядер - базальным ядрам (см.). Эти ядра занимают центральное место среди структур экстрапирамидной системы, являясь высшим надсегментарным аппаратом, обеспечивающим регуляцию двигательных актов с участием различных мышечных групп. С помощью базальных ядер осуществляются все синергии, входящие в состав таких сложных двигательных актов, как ходьба, бег, лазанье и др. При участии экстрапирамидной системы создается плавность движений и устанавливается исходная поза для их выполнения. Экспериментальные исследования и клинические наблюдения позволяют отметить многообразие форм и в то же время однозначность (усиление или подавление) двигательных реакций при разрушении или раздражении экстрапирамидных образований. Повреждения образований экстрапирамидной системы вызывают различные нарушения в двигательной сфере. Так, при повреждении внутренней капсулы в глубине полушария головного мозга, где проходят как пирамидные, так и экстрапирамидные волокна, наблюдается спастическое повышение тонуса мышц парализованных конечностей (см. Гемиплегия), которое обусловлено разрушением именно экстрапирамидных проводников, оказывающих в норме тормозное влияние на ретикулярную формацию. Обычно при изолированном повреждении пирамидного тракта на уровне продолговатого мозга (см.), где большинство экстрапирамидных волокон идет отдельно и не затрагивается при повреждении, наблюдается мышечная гипотония. Наиболее выраженные тормозные эффeкты проявляются в эксперименте при стимуляции экстрапирамидных областей коры головного мозга. Как показала Тауэр (S. S. Tower, 1940), корковое торможение может быть двух видов - торможение мышечного тонуса (см.) и торможение совершающегося движения (см.). Последний вид торможения характерен для нисходящих корковых экстрапирамидных влияний, они играют важную роль в регуляции физиологической активности двигательных экстрапирамидных ядер мозгового ствола, от которых к двигательным центрам спинного мозга поступает мощный поток возбуждений. Прямые пирамидные корковые связи ускоряют движения и обеспечивают возможность их более тонкой дифференцировки. Экстрапирамидные движения, вызываемые стимуляцией различных участков коры, более медленны и стереотипны. В отсутствие тормозных влияний коры головного мозга движения превращаются в ряд судорожных мышечных сокращений.

Среди структурных образований экстрапирамидной системы стриатум считается высшим подкорковым регуляторно-координационным центром организации движений, в то время как паллидум, влияя на нейроны спинного мозга через структуры среднего и продолговатого мозга, координирует тонус и фазовую двигательную активность мышц. Деятельность стрио-паллидарных структур связана с выполнением медленных сложных движений, таких как медленная ходьба, перешагивание через препятствие, вдевание нитки в иголку и др. При осуществлении какого-либо движения в ограниченном или в чрезмерном объеме афферентная обратная снизь от проприоцепторов сигнализирует об этом, и от базальных ядер к двигательным областям коры головного мозга и к стволовым структурам поступают сигналы коррекции. Таким образом, пирамидная и экстрапирамидная системы успевают по ходу выполнения движений внести исправления в непрерывный поток двигательных возбуждений. После разрушения стриатума возникают непроизвольные хаотические движения отдельных конечностей - гиперкинезы (см.). Нарушения экстрапирамидной регуляции произвольной и непроизвольной двигательной активности мимических мышц (см. Мимика) приводят к неадекватному внешнему выражению эмоций (см.), непроизвольному смеху и плачу или полному отсутствию мимического выражения (маскообразное лицо).

Одной из функций бледного шара является торможение нижележащих ядер среднего мозга. При повреждении бледного шара наблюдается увеличение тонуса скелетной мускулатуры (гипертонус) вследствие освобождения красного ядра среднего мозга от тормозящего влияния паллидума. Раздражение бледного шара приводит к повышению тонуса мышц и тремору конечностей, а также к ограничению и скованности движений. Эти явления устраняются при разрушении паллидума. Торможение движений наблюдается и при раздражении полосатого тела. Подобные эффекты подавления движений отмечаются при раздражении так наз. тормозных зон экстра пирамидной системы (поясная кора головного мозга, части моторной коры, хвостатое ядро, мозжечок, ретикулярная формация).

Стриатум дает начало многим двигательным путям экстрапирамидной системы, среди которых выделяют эффекторный путь, идущий к паллидуму, а далее через красное ядро и руброспинальный тракт - к спинному мозгу. Стриатум, включающий хвостатое ядро и скорлупу чечевицеобразного ядра, достаточно хорошо морфологически и нейрофизиологически изучен. Обилие внутренних связей является особенностью его строения, хотя небольшое число нейронов посылает свои аксоны и к другим структурам мозга, в том числе к ядрам таламуса и гипоталамуса. Экспериментальные физиологические исследования с применением микроэлектродов показали (см. Микроэлектродный метод исследования), что стриатум оказывает двойственное влияние на нейроны бледного шара - возбуждающее и тормозящее. Электрическое раздражение хвостатого ядра, скорлупы и бледного шара вызывает торможение двигательного компонента условных и безусловных реакций животных. Предполагают, что морфологическим субстратом подобных тормозных влияний являются прямые восходящие связи перечисленных структур с моторной и соматосенсорной корой, а также с таламическими ядрами (вентральными передним и латеральным) и срединным центром.

Головка хвостатого ядра играет важную роль в организации предпусковых процессов, которые включают перестройку позы (см.), предшествующей произвольному двигательному акту. Это подтверждают данные микроэлектродных исследований, выявивших изменения нейрональной активности головки хвостатого ядра в период, предшествующий осуществлению произвольного движения. Так, с помощью микроэлектродных методов Ники (H. Niki с сотр. (1972) показал, что у обезьян в ситуации простого выбора и нажатия на рычаг активация нейронов головки хвостатого ядра перед началом произвольного движения предшествует активации нейронов префронтальной коры. Электромиографическая активность конечности животного регистрируется в среднем через 110 мсек после активации головки хвостатого ядра. По данным Эвартса(E.V. Evarts, 1966), разряд пирамидного нейрона в коре головного мозга обезьяны предшествует мышечной активности ее конечности на 50-100 мсек.

Большинство структур экстрапирамидной системы не имеет прямых выходов к мотонейронам спинного мозга, их влияние на них опосредовано через ретикуло-спинальный тракт, являющийся как бы общим конечным путем экстрапирамидной системы (см. Двигательные центры, пути). Кроме того, экстрапирамидные влияния на спинной мозг и ядра черепно-мозговых нервов осуществляются через трункоспинальные пути, проводящие импульсы от ядер промежуточного мозга (см.), среднего мозга (см.) и продолговатого мозга (см.). Эти пути включают руброспинальный, вестибулоспинальный и оливоспинальный пути. Через эти же пути осуществляется часть мозжечковых влияний на мотонейроны спинного мозга (см. Мозжечок). Общность эффектов этих влияний с экстрапирамидной регуляцией позволяет относить эти структуры к экстрапирамидной системе.

Все супраспинальные структуры, входящие в экстрапирамидную систему, адресуют свои влияния гамма-мотонейронам спинного мозга (см.). Как показали исследования Р. Гранита, гамма-мотонейроны регулируют поток проприоцептивных афферентных импульсов, поступающих в спинной мозг от мышечных веретен (см. Проприоцепторы). Эти афферентные импульсы влияют на возбудимость альфа-мотонейронов, активность которых определяет рабочее состояние скелетных мышц. Например, включение мотонейронов в рефлекс растяжения - миостатический рефлекс - представляет собой часто спинальный процесс, для обеспечения которого достаточно включения одного-двух спинальных сегментов. В этом процессе имеет место прямое управление мотонейронами с помощью сигналов, поступающих от первичных проприорепторов. Нисходящие влияния со стороны структур экстрапирамидной системы могут облегчать или подавлять рефлекс растяжения, что проявляется при децеребрационной ригидности (см.), когда чрезвычайно усиливаются миостатические рефлексы (см. Рефлекс). Фактором, усиливающим их, является увеличение под действием нисходящих влияний активности гамма-мотонейронов, которая, в свою очередь, приводит к возрастанию разрядов рецепторов растяжения и соответствующей интенсификации моносинаптического возбуждения альфа-мотонейронов. Вместе с тем быстропроводящие волокна, берущие начало из медиальной части ретикулярной формации продолговатого мозга и варолиева моста (см. Мост головного мозга), а также из латерального вестибулярного ядра Дейтерса (см. Преддверно-улитковый нерв) тоже моносинаптически возбуждают альфа-мотонейроны спинного мозга и обеспечивают осуществление быстрых движений. Медленнопроводящий нисходящий путь покрышки среднего мозга обеспечивает регуляцию тонических реакций. Таким образом, если нисходящие влияния пирамидной системы (см.), действуя непосредственно на альфа-мотонейроны, повышают их функциональную активность при осуществлении фазных и тонических двигательных реакций организма, то регулирующие влияния экстрапирамидной системы на гамма-мотонейроны обеспечивают необходимую коррекцию выполняемых движений и являются дополнительным механизмом воздействия на позно-тоническую и двигательную активность. Это наиболее выражено при сохранении вертикального положения тела, когда силе тяжести противодействует сокращение мышц-разгибателей, вызываемое облегчающими влияниями стволовых структур экстрапирамидной системы. Тормозные регулирующие влияния, идущие от двигательных центров коры и стриопаллидарных структур, корректируют степень напряжения скелетных мышц.

В настоящее время представления о функциях стриопаллидарных структур существенно расширились. Данные большого количества экспериментальных и клинических исследований свидетельствуют об участии хвостатого ядра, скорлупы, бледного шара не только в регуляции моторной деятельности, но и в анализе афферентных потоков, в регуляции ряда вегетативных функций, в осуществлении сложных форм врожденного поведения, в механизмах кратковременной памяти, а также в регуляции цикла бодрствование - сон. Широкое участие стриопаллидарных образований в организации сложного поведения организмов базируется на обширной мультисенсорной и гетерогенной конвергенции возбуждений к отдельным нервным клеткам. На нейронах происходит взаимодействие афферентных потоков, поступающих практически от всех сенсорных структур, от многих областей коры головного мозга, от таламических, ретикулярных, нигральных, лимбических (см. Лимбическая система) и других структур мозга. Например, при низкой частоте фоновой импульсации и небольшом количестве спонтанно активных нейронов хвостатого ядра почти половина его клеток тем не менее обладает большой конвергентной емкостью и реагирует на звуковой, пищевой и электрокожный раздражители. Взаимодействию нейронов структур экстрапирамидной системы и специфическому включению их в осуществление высших функций способствуют нейротрансмиттеры - дофамин, серотонин, ацетилхолин, ГАМК (см. Гамма-аминомасляная кислота) и др. Подобная химическая гетерогенность синаптических образований в структурах экстрапирамидной системы обеспечивает специализацию включения ее компонентов в механизмы тонкой координации двигательных актов. Избирательное поражение медиаторных процессов в экстрапирамидную систему у человека вызывает появление характерной клинической симптоматики.

Таким образом, широкие афферентные и эфферентные связи структур экстрапирамидной системы между собой, двусторонние связи подкорковых ядер с корой головного мозга, особенно с ее моторными зонами, а также специфические нейромедиаторные связи со структурами промежуточного, среднего и продолговатого мозга обеспечивают широкое взаимодействие в пределах экстрапирамидной системы, что является основой высшей интеграции поведенческих актов и контроля за ними. Функциональная связь экстрапирамидной системы с вегетативными центрами головного мозга обусловливает ее включение в механизмы эмоционально-аффективных реакций организма.

Патология

Поражения экстрапирамидной системы проявляются нарушениями двигательной сферы, при которых не наблюдается клинических признаков поражения пирамидной системы и нарушений чувствительности. Патологические экстрапирамидные синдромы развиваются как при поражении ядер экстрапирамидной системы, так и ее многочисленных связей.

Причиной поражения экстрапирамидной системы могут быть различные заболевания головного мозга - энцефалиты (см.), сосудистые заболевания (см. Атеросклероз , Гипертоническая болезнь), наследственные заболевания центральной нервной системы, черепно-мозговая травма (см.), родовая травма, интоксикации марганцем, окисью углерода, опухоли или гематомы головного мозга глубинной локализации и др. К поражению структур экстрапирамидной системы может привести длительное применение препаратов раувольфин, метилдофа, нейролептических средств (см.), например галоперидола, аминазина и др., а также тяжелая аллергия (см.), асфиксия (см.), полиглобулия (см. Эритроцитозы) и др.

В патогенезе экстрапирамидных синдромов, как было установлено в последние десятилетия, большое значение имеют химические передатчики нервного импульса - медиаторы (см.). При патологии нарушается действие специализированных медиаторов - дофамина, ацетилхолина, гамма-аминомасляной кислоты (ГАМК), серотонина и др., содержащихся в соответствующих нейро-моноаминергических системах мозга (дофаминергических, холинергических, ГАМКергических, серотонинергических и др.). Экстрапирамидные патологические синдромы возникают при дефиците нейроаминов в определенных структурах экстрапирамидной системы, при нарушении нормальной сбалансированности тормозного и облегчающего влияний медиаторных систем. Например, двигательные и эмоциональные проявления паркинсонизма (см.) связаны со снижением активности систем дофаминергических нейронов черного вещества и базальных ядер. Нейромедиаторные нарушения, лежащие в основе хореи Гентингтона (см. Гентингтона хорея), связаны с реципрокным взаимодействием тормозных ГАМК-нейронов и дофаминергических нейронов в полосатом теле. Наследственная дегенерация нейронов первого типа, наблюдающаяся при этом заболевании, способствует высвобождению активности дофаминергической системы и появлению хореических гиперкинезов.

Многообразие экстрапирамидных патологических синдромов обусловлено наличием так наз. анатомо-биохимической диссоциации, выражающейся в том, что морфологические нарушения на одном уровне экстрапирамидной системы приводят с помощью механизма медленного аксонального транспорта нейроаминов к развитию нейрохимических нарушений на другом уровне экстрапирамидной системы, где морфологические патологические изменения отсутствовали.

Для выявления патологии экстрапирамидной системы определяют содержание катехоламинов (см.) и других нейромедиаторов в крови и цереброспинальной жидкости, производят ангиографию (см.), гамма-топографию (см. Энцефалография, радиоизотопная), компьютерную томографию (см. Томография компьютерная), электроэнцефалографию (см.), пневмоэнцефалографию (см.), реоэнцефалографию (см.), исследуют состояние нервно-мышечной системы с помощью методов электромиографии (см.), миотонометрии, стабилографии, треморографии, кимографии (см. Кимография) гиперкинезов в состоянии покоя и при стимуляции и др.

При поражениях экстрапирамидной системы нарушаются двигательные функции, тонус мышц, поза тела, походка, эмоциональные проявления, вегетативнососудистые реакции. Поскольку у человека существует тесная связь между моторикой и мышечным тонусом, при патологии экстрапирамидной системы постоянно встречаются сочетанные нарушения той и другой ее функций. Поражение различных отделов экстрапирамидной системы сопровождается развитием характерных клинических синдромов, которые условно определяют как гипертонически-гипокинетический, связанный преимущественно с патологией паллидума, и гипотонически-гиперкинетический, обусловленный преимущественно патологией стриатума.

Рис. 1. Поза больного паркинсонизмом с акинетико-ригидным синдромом: руки согнуты в лучезапястных и локтевых суставах, ноги полусогнуты в коленных суставах, голова наклонена к груди.

Симптомокомплекс поражения паллидума и его связей характеризуется гипертонически-гипокинетическим статусом, основными проявлениями которого являются повышение мышечного тонуса (см.) и уменьшение двигательной активности (гипокинезия) или практическая обездвиженность при отсутствии параличей (акинезия). Экстрапирамидную мышечную гипертонию (паллидарную мышечную ригидность) называют также восковой, или пластической; при пассивных движениях конечностей больного врач, осуществляющий их, испытывает сопротивление движению, которое остается одинаковым от начала и до конца движения. В случае пассивного разгибания согнутых конечностей больного иногда ощущается прерывистость, своеобразная ступенчатость при пассивном растяжении мышц-сгибателей, названная симптомом зубчатого колеса. Экстрапирамидная гипокинезия обнаруживается на фоне сохранности силы мышц и возможности полного объема движений, которая, однако, не реализуется больным, так как двигательная инициатива его резко снижена. У больных с паллидарным синдромом наблюдается общая скованность с характерной позой: руки согнуты в лучезапястных и локтевых суставах и прижаты к туловищу, ноги полусогнуты в коленных суставах, голова наклонена к груди (так называемый флексорный статус). Больной, приняв ту или иную позу, как бы застывает в этой позе, долго ее сохраняя (рис. 1). Походка замедлена, речь больных глуха, монотонна, без нормальных модуляций. Лицо лишено мимики, маскообразно (см. Мимика). Все произвольные движения совершаются медленно, с трудом (брадикинезия), физиологические синкинезии (см.) отсутствуют, постуральные рефлексы (см.) повышены. Паллидарная мышечная ригидность в сочетании с усилением постуральных рефлексов и поз, выпадением экстрапирамидных кинезов (см. Амиостатический симптомокомплекс) составляет основу синдрома паркинсонизма (см.) и атеросклеротической мышечной ригидности (акинетико-ригидный синдром Ферстера).

Одним из проявлений экстрапирамидных нарушений является дрожание (см.), в патогенезе которого основную роль играют нарушения в системе красное ядро - ретикулярная формация - зубчатое ядро мозжечка. Дрожание (тремор) имеет разную амплитуду движений, частоту, ритмичность и локализацию (тремор пальцев, конечностей, головы и др). Характерное статическое дрожание пальцев рук (тремор покоя) в виде ритмичного движения, напоминающего скатывание пилюль или счет монет, характерно для болезни Паркинсона (см. Дрожательный паралич) и чаще сочетается с экстрапирамидной ригидностью мышц и гипомимией. Статодинамическое, моторное или кинетическое дрожание (появляющееся при движении) является единственным симптомом так наз. эссенциального, идиопатического тремора - самостоятельного хронического, медленно прогрессирующего заболевания экстрапирамидной системы. Кинетический тремор с дрожанием большой амплитуды, возникающим в конечностях, туловище, голове при попытке любого целенаправленного движения, наблюдается при гепато-церебральной дистрофии (см.). К динамическому, интенционному дрожанию относится мозжечковый тип дрожания, который характерен для рассеянного склероза (см.), некоторых энцефалитов.

При поражении ядер покрышки среднего мозга (см.), ретикулярной формации (см.), черной субстанции (см. Средний мозг) появляются экстрапирамидные нарушения в виде фиксированных поз (флексорного или экстензорного статуса) с усилением рефлексов положения (см. Постуральные рефлексы).

Симптомокомплекс поражения стриатума и его связей характеризуется гиперкинетико-гипотоническим статусом, основными проявлениями которого являются разнообразные непроизвольные, насильственные движения, или экстрапирамидные гиперкинезы (см.), вычурные позы, гримасы, жестикуляции, нарушения сложных актов речи, письма, походки, развивающиеся на фоне мышечной гипотонии или дистонии.

Рис. 2. Лицо больного хореей Гентингтона: видна гримаса вследствие хореических гиперкинезов мышц лица.

Обширную группу стриарных нарушений составляют различные виды хореи: малая хорея (см. Ревматизм), хорея Гентингтона (см. Гентингтона хорея), атеросклеротическая хорея, хорея беременных и др. (см. Хорея). Судороги (см.) при хорее быстрые, гиперкинезы размашистые, появляются во всех частях тела, в мышцах лица. Наблюдается гримасничанье (рис. 2), расстраивается речь, письмо, походка становится пританцовывающей. Тонус мышц понижен или изменчив (дистония). После острых нарушений мозгового кровообращения в области полосатого (стриарного) тела и внутренней капсулы может возникнуть синдром гемихореи, при к-ром хореический гиперкинез охватывает лишь половину тела. Н. К. Боголепов (1957) описал так называемый пароксизмальный хореический рубральный гиперкинез, проявляющийся рубящими, размашистыми движениями всех конечностей, сопровождающимися ротацией туловища. В отличие от стриарной хореи в этом случае поражение локализуется в области верхних ножек мозжечка. К вариантам хореического гиперкинеза относят и гемибаллизм (см. Гиперкинезы), при котором наблюдаются бросковые, вращательные движения конечностей одной стороны тела в сочетании с гипотонией мышц. Этот гиперкинез возникает при поражении субталамического ядра и его связей с бледным шаром.

Рис. 3. Рука больного атетозом: гиперкинез в дистальном отделе с переразгибанием пальцев и характерным видом кисти.

Одной из форм экстрапирамидных гиперкинезов является атетоз (см.). Патологические движения в дистальных отделах рук, ног, в лице, шее, наблюдающиеся при атетозе, изменчивы, несинхронны, совершаются как бы с преодолением препятствия, производят впечатление червеобразного, непрерывно текущего спазма (рис. 3).

Рис. 4. Поза больного с торсионным спазмом: голова запрокинута вследствие спастического напряжения мышц шеи.

Мышечный тонус изменчив (дистония). Атетозный гиперкинез характерен для детского церебрального паралича (см. Детские параличи), он бывает также следствием энцефалитов, сосудистых и дегенеративных заболеваний головного мозга. Часто наблюдаются смешанные формы гиперкинезов: хореоатетоз, атетоз с так называемой таламической рукой (см. Таламус) и др. К стриарным экстрапирамидным гиперкинезам относится торсионный спазм. Для него характерны распространенные, чаще вращательные, спазмы больших мышечных масс, вызывающих характерные позы тела с перегибающими (рис. 4), перекручивающими движениями туловища, возникающими при произвольных движениях (см. Торсионная дистония). Торсионный гиперкинез в сочетании с гемибаллизмом, хореическими гиперкинезами, дрожанием (см. выше) и др. наблюдается при гепато-церебральной дистрофии (см.), лейкоэнцефалитах (см.) и других поражениях экстрапирамидной системы.

Тонико-клонические гиперкинезы мышц лица экстрапирамидной природы встречаются при лицевом пара-спазме (спазм Мейжа), охватывающем мышцы верхней части лица, или (при распространенном спазме) все мимические мышцы, а также мышцы шеи и конечностей. Параспазму, как и многим экстрапирамидным синдромам, свойственны парадоксальные кинезин, то есть произвольные установки и позы, к которым больной прибегает для уменьшения или прекращения гиперкинеза.

При поражении экстрапирамидной системы нередко встречаются тонические спазмы взора (см. Взора паралич, судорога), блефароспазм (см.). К локализованным спазмам экстрапирамидного генеза относится спастическая кривошея (см.), при которой шея и голова насильственно фиксированы вследствие спазма мышц шеи в различных позициях (боковой, передней, задней). Этот синдром появляется после энцефалита, интоксикаций. Он обусловлен высвобождением шейно-тонических и лабиринтных рефлексов на уровне оральных отделов мозгового ствола и может сочетаться с другими экстрапирамидными гиперкинезами - дрожанием, торсионной дистонией. Кривошея, обусловленная поражением экстрапирамидной системы, отличается от рефлекторной кривошеи, возникающей при наличии добавочного ребра, при шейном радикулите, остеохондрозе (см. Шейно-плечевые синдромы).

При поражении экстрапирамидной системы может развиваться тик лицевых мышц, мышц брюшной стенки, диафрагмы, гортани (см. Тик). Генерализованный тик в сочетании с «внезапными выкриками» у детей известен как синдром Туретта (см. Туретта синдром). Существует тик диафрагмы, вызывающий икоту и гиперкинезы с респираторными пароксизмами, возникающими в результате сокращения мышц диафрагмы, передней брюшной стенки и характеризующимися приступами быстрых судорожных выдохов, сопровождающихся криками и покашливанием. Во время пароксизма такого респираторного гиперкинеза учащается пульс, наблюдаются вазомоторные расстройства.

Диагноз паллидарных синдромов поражения экстрапирамидной системы с характерными клиническими проявлениями не представляет трудностей. При стриарных гиперкинетических синдромах необходимо многостороннее клиническое обследование для подтверждения органической природы поражения и дифференциальной диагностики с часто наблюдающимися привычными навязчивыми движениями, невротическими тиками, рефлекторными спазмами мышц, не обусловленными органическим поражением экстрапирамидной системы.

Лечение экстрапирамидных поражений направлено прежде всего на основное заболевание. Кроме того, используют патогенетические, симптоматические и общеукрепляющие лекарственные средства. К ним относятся холинолитики, миорелаксанты, бета-блокаторы, средства, содержащие L-ДОФА, фенотиазины. В ряде случаев показаны иглотерапия, аутотренинг. Хирургическое лечение при патологии экстрапирамидной системы заключается в стереотаксических операциях (см. Паллидотомия , Стереотаксическая нейрохирургия , Таламотомия), осуществляемых с целью деструкции отдельных структур экстрапирамидной системы, приводящей к устранению гиперкинезов и уменьшению ригидности мышц.

Библиогр.: Бернштейн Н. А. Очерки по физиологии движений и физиологии активности, М., 1966; Г ранит Р. Основы регуляции движений, пер. с англ., М., 1973; Кандель Э. И. и Войтына С. В. Деформирующая мышечная (торсионная) дистония, М., 1971; Коновалов Н. В. Гепато-церебральная дистрофия, М., 1960; Многотомное руководство по неврологии, под ред. С. Н. Давиденкова, т. 2, с. 133, М., 1962, т. 7, с. 304, 1960; Нейротрансмиттерные системы, под ред. Н. Дж. Легга, пер. с англ., М., 1982; Петелин Л. С. Экстрапирамидные гиперкинезы, М., 1970, библиогр.; Стриопаллидарная система, под ред. Н. Ф. Суворова, Л., 1973; Суворов Н. Ф. Стриарная система и поведение, Л., 1980; Физиологические механизмы движений, под ред. Д. С. Гамбаряна, Ереван, 1978; Частная физиология нервной системы, под ред. П. Г. Костюка, Л., 1983; Шаповалов А. И. Нейроны и синапсы супраспинальных моторных систем, Л., Aldrige J. W., Anderson R. J. a. Murphy J. Т. The role of the basal ganglia in controlling a movement initiated by a visually presented cue, Brain Res., v. 192, p. 3, 1980. H. К. Боголепов, E. И. Минакова;

С. С. Михайлов (ан.), Ю. А. Фадеев (физ.).



Статьи по теме