Резкое расширение трубопровода. Местные сопротивления

ЛАБОРАТОРНАЯ РАБОТА № 4

Определение коэффициента местных сопротивлений в трубопроводе.

Цель работы:

1. определить опытным путем потери напора при внезапном расширении (сужении) трубы и резком повороте канала, сравнив со значением потерь, вычисленными по теоретическим формулам;

2. определить коэффициенты местных сопротивлений по результатам опыта и теоретическим формулам, сравнить значения.

Оборудование и приборы : установка для исследования местных потерь напора, термометр, измерительная линейка, мерный сосуд, секундомер.

4.1. Теоретическое введение

Гидравлические сопротивления делятся на сопротивления сил вязкостного трения по длине трубы и местные сопротивления.

Потери напора на трение рассмотрены для случая равномерного движения жидкости, т. е. живое сечение вдоль трубы сохраняется постоянным. При движении жидкости в местных сопротивлениях поток претерпевает деформацию, что приводит к изменению форм и размеров живого сечения, и. следовательно, движение жидкости становится неравномерным, вследствие чего происходит изменение скорости потока. В местах изменения живого сечения или направления потока происходит его отрыв от стенок, и образуются так называемые вихревые или застойные зоны. Между основным потоком и вихревыми зонами осуществляется интенсивный обмен частицами жидкости, что является основным источником местных потерь энергии.

Количество энергии (напора), затрачиваемой на преодоление местных сопротивлений в напорных трубах (внезапное сужение и расширение, резкий поворот потока и т. д.) в большинстве случаев определяется с помощью коэффициентов, полученных опытным путем.

Потери напора в местных сопротивлениях при турбулентном режиме вычисляют по формуле Вейсбаха:

Таким образом, местные потери напора пропорциональны скоростному напору.

Значения коэффициентов местного сопротивления получают экспериментально из формулы (4.1)

Если местное сопротивление (например, вентиль , диафрагма, колено и т. п.) расположено на горизонтальном трубопроводе постоянного сечения, то потери напора будут равны разности показаний пьезометров, установленных по обе стороны местного сопротивления.

Т. к. , то, подставляя это значение в формулу 4.2, получим формулу для определения коэффициента сопротивления опытным путём:

где – площадь сечения трубопровода до сопротивления.

– расход жидкости через сопротивление.

Ввиду сложности явлений, происходящих в жидкости при движении через местные сопротивления, теоретические формулы для определения потерь напора и коэффициентов местных сопротивлений удалось получить только для простейших видов, таких как внезапное расширение и сужение, плавное расширение или сужение, диафрагма и т. п.

Внезапное расширение.

При внезапном расширении потока в трубке от сечения 1 до сечения 2 жидкость не течёт по всему контуру стенок, а движется по плавным линиям токов. Вблизи стенок, где внезапно увеличивается диаметр трубы, образуется пространство, в котором жидкость находится в интенсивном вращательном движении . При таком интенсивном перемешивании происходит очень активное трение жидкости о твёрдые стенки трубы, а также трение внутри вращающихся потоков, вследствие чего происходят существенные потери энергии. Вследствие действия сил инерции потока движущейся жидкости вихреобразование прекращается на некотором достаточно большом расстоянии от зоны выхода жидкости в большее сечение. В результате давление нарастает постепенно.

На рисунке видно, что показания пьезометра во втором сечении больше, чем в первом. Показания пьезометра в данном случае зависят не только от потерь энергии, но и от величины давления. Давление во втором сечении становится больше из-за уменьшения скоростного напора за счёт расширения потока и падения скорости. В этом случае если бы не было потерь напора на местном сопротивлении, то высота жидкости во втором пьезометре была бы ещё больше. Теоретический коэффициент местного сопротивления при внезапном расширении потока равен:

если определять по скорости.

если определять по скорости .

Формула для теоретического определения потерь напора при внезапном расширении имеет вид:

Расчетную формулу для теоретического определения потерь напоров применительно к круглым трубам получил также французский инженер Борда.

т. е. потери напора вследствие внезапного расширения равны скоростному напору потерянной скорости.

Внезапное сужение потока

При внезапном сужении, так же как и при внезапном расширении потока, создаются пространства с завихрениями вращающейся жидкости, которые образуются в пристенном пространстве широкой части трубы. Такие же завихрения образуются в начале узкой части трубы за счёт того, что при входе в неё (узкую часть) жидкость продолжает некоторое время двигаться по инерции в направлении центра трубы, и основное русло потока ещё некоторое время продолжает сужаться. Следовательно, при внезапном сужении потока возникает как бы два подряд идущих местных сопротивления. Местное сопротивление за счёт сужения основного русла и сразу же за ним местное расширение, уже рассмотренное выше.

внезапном сужении потока

Произведя преобразования и подстановку определённых значений в формулу Борда (4.6) можно получить ещё одну формулу для теоретического определения коэффициента сопротивления при внезапном сужении потока:

Общей формулой для теоретического определения потерь напора при внезапном сужении потока в обоих случаях будет:

где - безразмерный коэффициент местного сопротивления,

Средняя скорость потока за местным сопротивлением.

Поворот потока

Поворот потока (отвод или закруглённое колено) значительно увеличивает вихреобразование и, следовательно, потери энергии. Величина потерь существенно зависит от отношения и угла.

Теоретический коэффициент сопротивления при повороте можно определить по экспериментальной формуле. Для поворота под углом 900 и он равен:

Теоретический коэффициент сопротивления при повороте потока можно также определить по эмпирической зависимости, предложенной:

где эмпирический коэффициент A берётся из таблицы 4.1.

повороте потока имеет вид:

Таблица 4.1.

Таблица для расчета добавочного коэффициента

Плавное расширение потока

Плавное расширение русла называется диффузором . Течение жидкости в диффузоре имеет сложный характер. Так как живое сечение потока постепенно увеличивается, то, соответственно, снижается скорость движения жидкости и увеличивается давление. Поскольку, в этом случае, в слоях жидкости у стенок диффузора кинетическая энергия минимальна (мала скорость), то возможна остановка жидкости и интенсивное вихреобразование. По этой причине потери энергии напора в диффузоре будут зависеть от потерь напора на трение и за счёт потерь при расширении:

Теоретический коэффициент сопротивления при плавном расширении потока можно определить по эмпирической зависимости, предложенной:

(4.14)

где: - площадь живого сечения на входе в диффузор,

- площадь живого сечения на выходе из диффузора,

- угол конусности диффузора,

Поправочный коэффициент, зависящий от условий расширения потока в диффузоре.

Угол рассчитывается по формуле:

где - длина конфузора или диффузора,

Формула для подсчёта теоретических потерь напора при плавном расширении потока имеет вид:

Плавное сужение потока

Такое сопротивление представляет собой коническую сходящуюся трубку – конфузор . Течение в конфузоре сопровождается постепенным увеличением скорости и одновременным снижением давления. По этой причине условия для вихреобразования на конической поверхности отсутствуют. Потери в этой части местного сопротивления происходят только за счёт трения. Вихреобразование может происходить только в узкой части трубы. Его природа аналогична природе подобного вихря при внезапном сужении потока, однако величина существенно меньше.

Коэффициент потерь напора в конфузоре можно определить по формуле:

Угол рассчитывается по формуле (4.14)

Формула для подсчёта теоретических потерь напора при плавном сужении потока имеет вид:

Примечание: в формулах (4.14) и (4.16) величина - коэффициент гидравлического трения, определяемый по формулам:

Для чисел Re менее 2300

Для чисел Re в интервале 2300 – 100000;

4.2. Схема универсальной лабораторной установки

Опыты проводятся на универсальной установке (см. п. 2.2. и рис. 2.1), на которой установлен составной трубопровод с вмонтированными в него моделями местных сопротивлений. Трубопровод соёдинён с приёмным и напорным баками.

Рис. Схема установки для расчёта местных сопротивлений

Модели местных сопротивлений расположены в горизонтальной плоскости лабораторной установки и представляют собой последовательно расположенные 2 поворота на 90° (1), 2 поворота на 45° (2) внезапное сужение (3), внезапное расширение (4). Модели плавного сужения и расширения потоков размещены на трубопроводе переменного сечения для исследования уравнения Бернулли.

На участке внезапного расширения составного трубопровода установлены 6 пьезометров: 1 пьезометр - на трубе малого диаметра d, 5 пьезометров - ни трубе большого диаметра (D) с целью визуального наблюдения за кривой изменения гидродинамического давления на данном участке потока жидкости.

1. Группа делится на 3 звена.

2. Все звенья изучают теоретический материал, методическое указание, записывают расчетные формулы и готовят таблицу измерений.

3. Первое звено проводит эксперимент по определению коэффициента местных сопротивлений при внезапном сужении и расширении потока, второе звено – при плавном сужении и расширении потока, третье - при резком повороте потока.

Чередование экспериментов может меняться по указанию преподавателя.

4. Все звенья производят расчеты, обмениваясь данными, полученными при эксперименте.

4.4. Порядок выполнения работы

Подготовка установки осуществляется по методике, изложенной в п.2.3. По готовности лабораторной установки к работе выполняются следующие операции:

1. измеряются показания пьезометров и диаметр сечений до исследуемого сопротивления и после него; расход жидкости, время наполнения мерного сосуда и заносятся в табл. 4.1;

2. вычисляется расход воды объемным способом, площади сечений, средние скорости, числа Рейнольдса, радиусы поворотов канала; результаты вычислений заносятся в таблицу 4.3;

3. вычисляются экспериментальные потери напора: , результаты вычислений заносятся в таблицу 4.3;

4. вычисляется коэффициенты местных сопротивлений по данным опыта (4.3) и опытные потери напора по формуле (4.1).

7-я лекция.

7. МЕСТНЫЕ ГИДРАВЛИЧЕСКИЕ СОПРОТИВЛЕНИЯ

9.7.Поворот трубы

9.8. Коэффициенты местных сопротивлений.

9.1. Общие сведения о местных сопротивлениях

Местными сопротивлениями называются участки трубопроводов, на которых из-за изменения размеров или направления движения жидкости происходит деформация потока.

Деформация вызывает дополнительное сопротивление, причиной которого являются вихреобразования. Работа, расходуемая на преодоление сопротивлений, превращается в тепловую энергию.

К местным сопротивлениям относятся: внезапные расширения и сужения, "колено" - поворот на некоторый угол, разветвления.

Конструктивно это могут быть: расширения и сужения в трубопроводе, гидрораспределители, клапаны, вентили.

Потери энергии, отнесенные к единице веса потока жидкости, определяются по формуле (Вейсбаха-Дарси):

где V – средняя скорость потока в сечении S, ζ - безразмерный коэффициент местного сопротивления, зависящий от числа Рейнольдса, формы местного сопротивления, шероховатости его поверхностей, степени открытости запорного устройства.

Потеря удельной энергии в местном сопротивлении характеризуется коффициентом ζ – дзета, который определяется в долях удельной кинетической энергии (скоростного напора):

Сечения трубопроводов перед местным сопротивлением и за ним могут быть разными. Потери удельной энергии могут быть вычислены через скоростной напор, как перед местным сопротивлением, так и после него. Поэтому коэффициент ζм может быть отнесен к любому из этих скоростных напоров, но будет иметь разные значения, обратно пропорциональные скоростным напорам. За расчетную скорость удобнее принимать большую из скоростей, т.е. ту, которая соответствует меньшему диаметру трубы.

Из сопоставления формул для определения потерь по длине и в местных сопротивлениях следует, что коэффициент ζ эквивалентен λ*( l/ d) . Поэтому потери энергии в местном сопротивлении можно рассматривать, как потери на эквивалентной длине прямого трубопровода, определяя эквивалентную длину по формуле

Используя эквивалентную длину, можно сравнить потери удельной энергии в местном сопротивлении с потерями на трение по длине.

Местное сопротивление влияет на подведенный и отходящий потоки. Нарушение потока начинается до него и заканчивается после него на значительном расстоянии.

Взаимовлияние соединенных местных сопротивлений проявляется в том, что сумма коэффициентов близко расположенных местных сопротивлений может быть меньше арифметической суммы отдельных коэффициентов. При выполнении расчетов этого не учитывают и складывают коэффициенты.

Коэффициенты сопротивления находят по эмпирическим таблицам для сопротивлений различных типов и конструкций, либо расчетным путем по аналитическим зависимостям. В таблицах приводятся усредненные величины коэффициентов. Если потери напора, отличаются от расчетных, следует проводить эксперименты по определению коэффициентов сопротивления.

При ламинарном режиме движения и малых числах Рейнольдса Re < 2300, когда в потоке преобладают силы вязкостного трения над силами инерции, коэффициенты сопротивления зависят только от числа Re:

В этом случае имеет место ламинарная автомодельность, и потери напора пропорциональны скорости в первой степени.

При турбулентном режиме движения и больших числах Re >> 2300 ÷10 5 в потоке преобладают силы инерции над силами вязкостного трения, коэффициенты местных сопротивлений практически не зависят от Re:

В этом случае имеет место турбулентная автомодельность, и потери напора пропорциональны квадрату скорости.

Понятие автомодельности относится к области гидродинамического моделирования и означает, сопоставимость коэффициентов сопротивлений местного сопротивления или потерь на трение в трубе при исследованиях на модели и на натуре при соблюдении чисел Рейнольдса.

Автомодельность имеет место, если обеспечено соотношение между вязкостью жидкости, геометрическими размерами потоков, например, диаметрами, кинематическими параметрами, например, скоростями в на модели и на натуре.

9.2. Внезапное расширение трубопровода

При внезапном расширении трубы (рис. 9.1) поток расширяется до большего диаметра не сразу, сначала жидкость выходит из меньшего сечения S 1 (обозначено 3 -4) в виде струи. Струя отделена от жидкости, находящейся вокруг ее поверхностью раздела.

Поверхность раздела неустойчива, в кольцевом пространстве между потоком и стенкой трубы образуются вихри. Струя постепенно расширяется и на некотором расстоянии l от начала расширения заполняет все сечение S 2 (обозначено 2-2).

В пространстве между струей и стенками жидкость находится в застойной зоне, из-за трения жидкость в этой зоне вовлекается в вихревое движение, затухающее по мере приближения к стенкам. Жидкость из этой зоны вовлекается в центральную струю, а жидкость из струи попадает в вихревую зону. Из-за отрыва потока и вихреобразования происходит потеря энергии.

Обозначим давление, скорость и площадь потока в сечении 1 – 1: Р 1 , V 1 , S 1 , а в сечении 2 – 2: Р 2 , V 2 , S 2 .


.

Сделаем следующие допущения:

1) гидростатическое давление распределяется по сечениям по закону гидростатики: .

2) распределение скоростей в сечениях соответствует турбулентному режиму движения α 1 = α 2 =1 .

3) Трение жидкости о стенки на участке 1-2 не учитываем, ввиду его небольшой длины, учитываем только потери на расширение;

4) движение жидкости является установившимся, в том смысле, что напор истечения постоянен и средние скорости в сечениях S 1 и S 2 имеют определенное значение и не меняются.

Запишем для сечений 1 - 1 и 2 - 2 уравнение Бернулли с учетом потерь напора на расширение h в.р. . Выразим потери на расширение

Определим величину потерь на внезапное расширение h в.р. теоремой об изменении количества движения.

Эта теорема формулируется известным образом: "изменению количества движения тела за единицу времени равно силе, действующей на тело».

δ q – приращение количества движения объема жидкости "1-1-2-2" в проекции на ось потока равно проекции на ту же ось импульса внешних сил, действующих на этот объем.

За время δ t объем "3-4-2-2", состоящий из элементарных струек, переместится в положение: 3"-4" -2"-2". Произойдет изменение количества движения жидкости, заключенной в объеме "1-1-2-2".

Жидкость в застойной зоне не участвует в главном движении, поэтому приращение количества движения в объеме "1-1-2-2" за время δt будет равно разности количеств движения в объемах: 3-4-3"-4" и 2-2 -2"-2". Внутренняя часть объема при вычитании сократится.

Обозначив скорости u 1 и u 2 в живых сечениях элементарных струек δ s 1 , δ s 2 , можно записать приращение количества движения элементарных масс в струйках:

перейдя к дифференциалу и, интегрируя по площадям, получим

.

Эти интегралы дают количества движения масс жидкости, протекающей через живые сечения S 1 и S 2 в единицу времени. Они могут быть найдены через средние V 1 и V 2 скорости в этих сечениях:

получим приращение количества движения потока при расширении за время dt

.

Внешние силы, действующие на рассматриваемый объем:

Сила тяжести G = ρ S 2 l, где l – длина рассматриваемого объема 1-1-2-2;

Силы давления жидкости на поверхность сечения 1-1 - S 1 , имея ввиду, что давление Р 1 действует по всей площади 1-1 - S 1 , так как на кольцевую площадь "1-3 и 4-1" действует реакция стенки трубы, а на поверхность сечения 2-2 - S 2 действует давление Р2.

Так как давления в сечениях действуют по гидростатическому закону, для определения сил на плоские стенки надо умножить давления в центре тяжести площадей S 1 и S 2 на их величину. Для проекции импульса получим

Приращение количества движения будет равно импульсу

Используя уравнение неразрывности V 1 S 1 = V 2 S 2 и значение синуса Sinα = ( z 2 - z 1)/ l и сократив на ρgS 2 получим

(9.4)

Подставляя в выражение для hв.р. получим

Потеря напора при внезапном расширении равна скоростному напору, определенному по разность скоростей для турбулентного режима движения.

Эту формулу называют формулой Борда в честь французского ученого, который вывел ее в 1766 г.

Формула хорошо подтверждается при турбулентном режиме течения и используется в расчетах. Явление сопротивления при внезапном расширении используется при конструировании лабиринтных уплотнений.

Определим коэффициенты сопротивления относительно скоростей в узком S 2 и широком сечении S 1 . Уравнение неразрывности


1.Относительно скорости V 1 в узком сечении S 1:

2.Относительно скорости V 2 в широком сечении S 2:

9.3. Потери энергии при выходе из трубы в резервуар.

Когда площадь резервуара S 2, велика в сравнении с площадью трубопровода S 1 , S 2 /S 1 →∞ велико, а скорость V 2 →0 мала, потеря на расширение при выходе из трубы в резервуар

9.3. Постепенное расширение трубы

Местное сопротивление, при котором труба постепенно расширяется, называется диффузором. Течение жидкости в диффузоре сопровождается уменьшением скорости и увеличением давления, происходит преобразование кинетической энергии жидкости в энергию давления.

Частицы движущейся жидкости преодолевает нарастающее давление за счет потери кинетической энергии. Формула для определения сопротивления диффузора похожа на формула для определения потерь при внезапном расширении

, где φд - коэффициент диффузора.

Определение коэффициента потерь для диффузора основывано на теореме Борда о внезапном расширении. Выражая коэффициент сопротивления относительно скорости V 1 в узком сечении S 1 , получим


Функция φ д =f(α) имеет минимум при угле α = 6º φ д =0,2 (рис.9.5), для угла α = 10º φ д =0,23-0,25.

Диффузор устанавливают для уменьшения потерь, возникающих при переходе от меньшего к большему диаметра трубы.

а) при 0<α<8-10º на всем протяжении диффузора наблюдается безотрывное движение жидкости;

б) при 8-10º <α<50-60º получается отрыв транзитной струи, с увеличением угла точка начала отрыва перемещается к меньшему сечению трубы;

в) при 50-60º <α отрыв транзитной струи от стенок начинается сразу за меньшим сечением трубы., с увеличением угла точка начала отрыва перемещается к меньшему сечению трубы;

Прямоугольные диффузоры (с расширением в одной плоскости) имеют оптимальный угол больше, чем у круглых и квадратных, около 10 ÷ 12° (плоские диффузоры).

При необходимости перехода на угол α > 15 ÷ 25° применяют специальный диффузор, обеспечивающий постоянный градиент давления вдоль оси dp/dx = const и равномерное нарастание давления, при прямой образующей градиент давления убывает вдоль диффузора, рис.9.6.

Уменьшение потери энергии в таких диффузорах будет тем больше, чем больше угол α, и при углах 40 - 60° доходит до 40 % от потерь в обычных диффузорах. Кроме того, поток в криволинейном диффузоре отличается большей устойчивостью, т. е. в нем меньше тенденций к отрыву потока.

Применяют также ступенчатый диффузор, состоящий из обычного диффузора с оптимальным углом и следующего за ним внезапного расширения.

9.4. Внезапное сужение трубопровода

При внезапном сужении трубы (рис.9.7) потери энергии связаны с трением потока при входе в узкую трубу и с потерями на вихреобразование. Поскольку поток не обтекает входной угол, а срывается с него и сужается, поисходит вихреобразование. Кольцевое пространство вокруг суженной части потока заполнено завихренной жидкостью.

Потеря напора определяется по формуле Идельчика, относительно скорости в необходимом для расчета сечении.

Относительно скорости в узком сечении V 1 коэффициент сопротивления равен

(9.13)

Относительно скорости в широком сечении V 2

где ξ суж - коэффициент сопротивления внезапного сужения зависящий от степени сужения и от сечения к которому приводится коэффициент, n = S 2 /S 1 - степень сужения.

9.5. Потери энергии при выходе из резервуара в трубу.

При выходе из резервуара в трубу больших размеров и при отсутствии закруглений входного угла, когда S 2 >>S 1 , отношение S 2 /S 1 →0, для выхода из резервуара в трубу получим, используя формулу Идельчика

коэффициент сопротивления

ξ в.р.тр. = 0,5.

Закруглением входного угла (входной кромки) можно значительно уменьшить потерю напора при входе в трубу.

9.6. Потери энергии при постепенном сужении трубы - конфузор.

Постепенное сужение трубы называется конфузором (рис.9.9). Течение жидкости в конфузоре сопровождается увеличением скорости и падением давления. Давление жидкости в начале конфузора выше, чем в конце, поэтому причин к возникновению вихреобразований и срывов потока, как в диффузоре, нет.

В конфузоре имеются только потери на трение, и поскольку его длина невелика, обычно l/d ≈ 3-4.сопротивление конфузора всегда меньше, чем диффузора и зависит от угла конфузора и его длины, обычные значения коэффициента ζ = 0,06-0,09. Например, для .

Расчет сопротивления конфузора производится по формуле для определения местных сопротивлений

Следует иметь ввиду, что значение ζ обычно связывается с узким сечением конфузора.

9.7.Поворот трубы

Местное сопротивление при повороте трубы на произвольный угол без закругления называется "колено" (рис. 9.10а). В колене имеют место значительные потери энергии, так в нем происходят отрыв потока и вихреобразование, эти потери тем больше, чем больше угол δ. Потерю напора рассчитывают по формуле

h = ξ к V 2 /(2 g).

Коэффициенты сопротивления колена круглого сечения определяют экспериментально, ξ к возрастает с увеличением угла δ (рис.9.17) и при δ = 90° достигает единицы.

Величина коэффициента сопротивления может быть определена приближенно по формуле

ζк =Sin 2 δ

Постепенный поворот трубы (рис.9.10в) называется отводом. Плавность поворота значительно уменьшает интенсивность вихреобразования, сопротивление отвода по сравнению с коленом меньше. При достаточно большом его значении относительного радиуса кривизны отвода R/ d , срыв потока устраняется полностью. Коэффициент сопротивления отвода ξ отв зависит от отношения R/ d, угла δ , а также от формы поперечного сечения трубы.


Для отводов круглого сечения при турбулентном режиме течения можно пользоваться эмпирической формулой при R/ d>> 1.

Для угла δ= 90° ξ" отв1 = 0,051+0,19*(d/R) (9.16),

для углов меньше δ<< 70° ξ отв2 = 0,9* ξ’ отв1 *Sinδ , (9.17)

для углов δ >> 100° ξ отв3 = (0,7 + (δ/90)*0,35)*ξ’ отв1 (9.18)

Потеря напора, определенные по коэффициентам ξ отв , учитывают сопротивление, обусловленное кривизной. При расчете трубопроводов, содержащих отводы, следует длины этих отводов включать в общую длину трубопровода для определения потерь на трение, затем к потере на трение нужно прибавить потери, определяемые коэффициентом ξ отв.

Внезапное сужение трубы

Гидравлические потери напора, как и при внезапном расширении, связаны с отрывом потока от стенок как в широкой, так и в узкой части трубы с образованием вихрей (водоворотной области) (рис. 4.19). При достижении потоком жидкости острых кромок узкой части трубы происходит отрыв потока, в результате он сужается (сечение С-С ) и далее расширяется. Пространство вокруг суженного потока будет представлять собой вихревую область.

Между водоворотной областью и транзитным потоком образуется поверхность раздела. В результате пульсации скоростей и вихреобразования происходит массообмен частицами водоворотной области и самого потока.

Рис. 4.19. Внезапное сужение трубы

Потери напора можно определить, используя формулу Борда, полагая, что в основном потери будут за сжатым сечением, а до сжатого сечения потери напора существенно малы.

Скорость в сжатом сечении С-С площадью


. (4.136)

Выразим отношение площадей сжатого сечения и площади узкой части трубы через коэффициент, который называется коэффициентом сжатия:


. (4.137)

Потери напора по Борда


. (4.138)

Из уравнения неразрывности


,

. (4.139)

Выразим потери напора через скоростной напор :


(4.140)


. (4.141)

Тогда коэффициент местного сопротивления


. (4.142)

Коэффициент сжатия зависит от отношения площадей узкой и широкой трубы:

. Отношение площадей

.

Коэффициент может быть вычислен по формуле А. Альтшуля


. (4.143)

Коэффициент местных сопротивлений может быть определен по формуле, предложенной И. Идельчиком:


. (1.144)

Если

, в случае когда труба выходит из большого резервуара,

, тогда при прямых углах соединения трубы

.

Вход потока в трубу

Экспериментальными исследованиями установлено, что сопротивления зависят от толщины передней кромки круглой трубы. Для кромки с относительной толщиной

коэффициент местных сопротивлений на входе

. При бесконечно малой толщине кромки (

)

.

Для уменьшения сопротивления на входе применяются входные наконечники конической формы или с плавным входом (рис. 4.20). В случае наличия перед входом в трубу экрана потери увеличиваются. В таких наконечниках весьма существенно уменьшается отрыв потока от стенок. Для конусных наконечников с



, наконечников с плавным входом -

при

.


Рис. 4.20. Различные входы в трубу

Диафрагма на трубопроводе

Диафрагма устанавливается на трубопроводе для регулирования расхода воды в определенном месте. Трубопровод в месте установки диафрагмы имеет постоянное живое сечение, d = const (рис. 4.21).

Рис. 4.21. Диафрагма на трубопроводе

Коэффициент местного сопротивления диафрагмы определяется по формуле


, (4.145)

где

- отношение площади отверстия диафрагмы диаметром к поперечной площади сечения трубы диаметром ; - коэффициент сжатия при прохождении потока через отверстие диафрагмы, рекомендуется находить по формуле А. Альтшуля (4.143):


.

Закругление трубы

Плавно закругленные трубы или поворот трубы называют отводом. Радиус кривизны R влияет на вихреобразование потока жидкости, т.е. на сопротивление движению (рис. 4.22). Известна формула Вейсбаха по определению коэффициента местных сопротивлений при соблюдении следующих условий:

:


, (4.146)

где - угол закругления.


Рис. 4.22. Закругления труб: а - плавное закругление (отвод); б - резкое закругление

В случае резкого поворота трубы (рис. 4.22, б) возникают существенно большие потери напора. В результате действия центробежных сил происходит отрыв от стенок потока жидкости с вихреобразованием, приводящий к возникновению водоворотной области.

Для такого круглого колена коэффициент зависит от угла наклона осей колена . При

находится в пределах значения 1,0. В случае большой шероховатости стенок будет больше единицы.

Регулирующая арматура

Задвижка. Для односторонней задвижки круглой трубы сопротивление зависит от степени ее открытия, т.е. от отношения (рис. 4.23). В результате малого открытия происходит отрыв потока от сегмента задвижки и стенок с образованием водоворотной области, а на поверхности раздела области с потоком происходит пульсация скоростей и интенсивное вихреобразование, приводящее к массообмену частицами жидкости.

В табл. 4.2 приведены значения коэффициента в зависимости от степени открытия .

Таблица 4.2 - Значения в зависимости от степени открытия


Рис. 4.23. Задвижка

Пробковый кран, вентили. Сопротивление пробкового крана напрямую зависит от угла открытия крана (рис. 4.24).

Рис. 4.24. Регулирующая арматура:

а - прямоточный вентиль; б - нормальный вентиль;

в - вентиль типа косва; г - пробковый кран

В табл. 4.3 приведены значения коэффициента местных сопротивлений крана .

Таблица 4.3 - Значения в зависимости от угла открытия

Значения коэффициентов местных сопротивлений вентилей (см. рис. 4.24) различной конструкции при полном их открытии следующие:

прямоточный -

;

нормальный -

;

с косым затвором (косва) -

.

Тройники

Деталь трубы, в которой имеет место разделение или соединение потоков жидкости, называется тройником (рис. 4.25). При определении гидравлических потерь в тройниках принимается средняя скорость соответствующая расходудо разделения и

- после слияния.


Рис. 4.25. Тройник: а - разделение потока; б - слияние потоков

Гидравлические потери напора возникают в результате соединения потоков жидкости или их разделения. Коэффициенты местных сопротивлений зависят от геометрии тройника, т.е. от угла , соотношения диаметров,, и отношения расходов и .

Коэффициенты местных сопротивлений

, получены в результате многочисленных опытов, их значения приведены в специальных справочниках .

Пример 4.5

В трубопроводе диаметром

мм имеется внезапное сужение диаметром

мм. Определить местные потери напора и коэффициент, отнесенный к узкой части трубопровода. Расход воды в трубопроводе

м 3 /с (см. рис. 4.19).

Коэффициент местных сопротивлений находим по формуле И. Идельчика (4.144):


.

Отношение площадей живых сечений характеризуется величиной

.


,


.

Средняя скорость в сужающей части трубы диаметром

м

м/с.

Потери напора


м.

Пример 4.6

Для ограничения расхода воды в трубопроводе диаметром

мм установлена диафрагма. Избыточные давления до диафрагмы и после нее постоянны и соответственно равны

кПа и

кПа. Определить необходимый диаметр отверстия диафрагмыd при условии, что расход

м 3 /с (см. рис. 4.21).

Потери напора на участке трубопровода, где установлена диафрагма, при скорости в трубопроводе

равны


м.

Средняя скорость в трубопроводе


м/с.

Коэффициент местных сопротивлений диафрагмы согласно формуле Вейсбаха


.

Коэффициент

вычисляется по формуле А. Альтшуля (4.145)


.

Коэффициент сжатия потока (4.143)


,


.

В первом приближении примем

.

Преобразуем формулу (4.145) для определения :


;

;

Уточним полученный диаметр отверстия, вычислив :


;


.

Диаметр отверстия диафрагмы после уточнения


мм.

Как показывают наблюдения, поток, выходящий из узкой трубы, отрывается от стенок и дальше движется в виде струи, отделенной от остальной жидкости поверхностью раздела (см. рис. 4.14). На поверхности раздела возникают вихри, которые отрываются и переносятся далее транзитным потоком. Между транзитным потоком и водоворотной зоной происходит массообмен, но он незначителен. Струя постепенно расширяется и на некотором расстоянии от начала расширения заполняет все сечение трубы. Вследствие отрыва потока и связанного с этим вихреобразования на участке трубы наблюдаются значительные потери напора.

Постепенное расширение.

Если расширение происходит постепенно (см. рис. 4.15), то потери напора значительно уменьшаются. При течении жидкости в диффузоре скорость потока постепенно уменьшается, уменьшается кинетическая энергия частиц, но увеличивается градиент давления. При некоторых значениях угла расширения α частицы у стенки не могут преодолеть увеличивающееся давление и останавливаются. При дальнейшем увеличении угла частицы жидкости могут двигаться против основного потока, как при резком расширении. Происходит отрыв основного потока от стенок и вихреобразование. Интенсивность этих явлений возрастает с увеличением угла α и степенью расширения .

Внезапное сужение.

При внезапном сужении потока (см. рис. 4.16) также образуются водоворотные зоны в результате отрыва от стенок основного потока, но они значительно меньше, чем при резком расширении трубы, поэтому и потери напора значительно меньше. Коэффициент местного сопротивления на внезапное сужение потока можно определить по формуле

Постепенное сужение (конфузор).

Величина сопротивления конфузора будет зависеть от угла конусности конфузора θ. Коэффициент сопротивления можно определить по формуле

,

Поворот трубы (колено).

В результате искривления потока на вогнутой стороне внутренней поверхности трубы давление больше, чем на выпуклой. В связи с этим жидкость движется с различной скоростью, что способствует отрыву от стенок пограничного слоя и потерям напора (см. рис. 4.17). Величина коэффициента местного сопротивления зависит от угла поворота θ, радиуса поворота R, формы поперечного сечения и приводится в справочниках. Для круглого сечения трубы при θ= 90º. коэффициент сопротивления можно определить по формуле

Во многих случаях приближённо можно считать, что потери энергии при протекании жидкости через элемент гидравлической системы пропорциональны квадрату скорости жидкости . По этой причине удобно бывает характеризовать сопротивление безразмерной величиной ζ , которая называетсякоэффициент потерь или коэффициент местного сопротивления и такова, что

22. Внезапное расширение и сужение потока (теорема Борда).

При внезапном расширении потока в трубке от сечения 1 до сечения 2 жидкость не течёт по всему контуру стенок, а движется по плавным линиям токов. Вблизи стенок, где внезапно увеличивается диаметр трубы, образуется пространство, в котором жидкость находится в интенсивном вращательном движении. При таком интенсивном перемешивании происходит очень активное трение жидкости о твёрдые стенки трубы об основное русла потока, а также трение внутри вращающихся потоков, вследствие чего происходят существенные потери энергии. Кроме того, какая-то часть энергии жидкости затрачивается на фазовый переход частиц жидкости из основного потока во вращательные и наоборот. На рисунке видно, что показания пьезометра во втором сечении больше, чем в первом. Тогда появляется вопрос, о каких потерях идёт речь? Дело в том, что показания пьезометра зависят не только от потерь энергии, но и от величины давления. А давление во втором сечении становится больше из-за уменьшения скоростного напора за счёт расширения потока и падения скорости. В этом случае надо учитывать, что если бы не было потерь напора на местном сопротивлении, то высота жидкости во втором пьезометре была бы ещё больше.

Назвав разность потерянной скоростью, можно сказать, что потеря напора при внезапном расширении равна скоростному напору, подсчитанному по потерянной скорости . Это утверждение носит имя теоремы Борда - Карно .

23. Трубопроводная арматура. Определение местных сопротивлений .

Трубопроводная арматура - устройство, устанавливаемое на трубопроводах, агрегатах, сосудах и предназначенное для управления (отключения, распределения, регулирования, сброса, смешивания, фазоразделения) потоками рабочих сред (жидкой, газообразной, газожидкостной,порошкообразной, суспензии и т. п.) путем изменения площади проходного сечения.

По области применения

· Пароводяная;

· Газовая;

· Нефтяная;

· Энергетическая;

· Химическая;

· Судовая;

· Резервуарная.

Местными гидравлическими сопротивлениями называются любые участки гидравлической системы, где имеются повороты, преграды на пути потока рабочей жидкости, расширения или сужения, вызывающие внезапное изменение формы потока, скорости или направления ее движения. В этих местах интенсивно теряется напор. Примерами местных сопротивлений могут быть искривления оси трубопровода, изменения проходных сечений любых гидравлических аппаратов, стыки трубопроводов и т.п. Потери напора на местных сопротивлениях определяются по формуле Вейсбаха :

;

где - коэффициент местного сопротивления.

Коэффициент местного сопротивления зависит от конкретных геометрических размеров местного сопротивления и его формы. В связи со сложностью процессов, которые происходят при движении жидкости через местные сопротивления, в большинстве случаев его приходится определять на основании экспериментальных данных.

Однако в некоторых случаях величины коэффициентов местных сопротивлений можно определить аналитически.

Из определения коэффициента видно, что он учитывает все виды потерь энергии потока жидкости на участке местного сопротивления. Его физический смысл состоит в том, что он показывает долю скоростного напора, затрачиваемого на преодоление данного сопротивления.

Коэффициенты различных сопротивлений можно найти в гидравлических справочниках. В том случае, если местные сопротивления находятся на расстоянии меньше (25ч50)d друг от друга ( - диаметр трубопровода, соединяющего местные сопротивления), весьма вероятно их взаимное влияние друг на друга, а их действительные коэффициенты местных сопротивлений будут отличаться от табличных. Такие сопротивления нужно рассматривать как единое сложное сопротивление, коэффициент которого определяется только экспериментально. Нужно отметить, что из-за взаимного влияния местных сопротивлений, расположенных вблизи друг друга в потоке, во многих случаях суммарная потеря напора не равна простой сумме потерь напора на каждом из этих сопротивлений.

При внезапном сужении, так же как и при внезапном расширении потока, создаются пространства с завихрениями вращающейся жидкости, которые образуются в пристенном пространстве широкой части трубы. Такие же завихрения образуются в начале узкой части трубы за счёт того, что при входе в неё (узкую часть) жидкость продолжает некоторое время двигаться по инерции в направлении центра трубы, и основное русло потока ещё некоторое время продолжает сужаться. Следовательно, при внезапном сужении потока возникает как - бы два подряд идущих местных сопротивления. Местное сопротивление за счёт сужения основного русла и сразу же за ним местное расширение, уже рассмотренное выше. С учётом этого потери напора при внезапном сужении примут вид

;

где - коэффициент местного сопротивления за счёт сужения потока,

Средняя скорость потока в самом узком месте основного русла (в сечении у ),

Средняя скорость потока в сечении 2 .

Для практических расчётов чаще всего пользуются следующей полуэмпирической формулой:

,

где - степень сужения трубы.


Конец работы -

Эта тема принадлежит разделу:

Гидравлика. Конспект лекций

Допущено Учебно-методическим объединением вузов по образованию в области автоматизированного машиностроения (УМО АМ) в качестве учебного пособия для студентов высших учебных заведений, обучающихся по направлениям подготовки: бакалавров и магистров - «Технология, оборудование и автоматизация машиностроительных производств»; дипломированных специалистов - «Автоматизированные технологии и производства»...

Если Вам нужно дополнительный материал на эту тему, или Вы не нашли то, что искали, рекомендуем воспользоваться поиском по нашей базе работ:

Что будем делать с полученным материалом:

Если этот материал оказался полезным ля Вас, Вы можете сохранить его на свою страничку в социальных сетях:

Все темы данного раздела:

Лекция 17. Гидравлический расчет трубопроводов
Жидкость движется по трубопроводу благодаря тому, что ее энергия в начале трубопровода (у источника гидравлической энергии) больше, чем в конце. Этот перепад (разница) уровней энергии может быть со

Простые трубопроводы постоянного сечения
Все трубопроводы могут быть разделены на простые и сложные. К простым трубопроводам относятся трубопроводы без разветвлений, а к сложным - трубопроводы, имеющие хотя бы одно разветвление (или место

Последовательное соединение трубопроводов
Последовательный трубопровод состоит из нескольких труб различной длины и различного диаметра, соединённых между собой. В каждом из этих трубопроводов могут иметься свои местные сопротивл

Параллельное соединение трубопроводов
Отличительной особенностью таких трубопроводов является то, что поток жидкости де

Трубопроводы с насосной подачей жидкости
В большинстве гидравлических систем технологического оборудования в качестве исто

Лекция 18. Гидравлический удар в трубопроводах
Теоретическое и экспериментальное исследование гидравлического удара в трубопроводах впервые было проведено известным русским учёным Николаем Егоровичем Жуковским в 1899

Скорость распространения гидравлической ударной волны в трубопроводе
Изменения давления и скорости потока в трубопроводах происходят не мгновенно в св

Ударное давление
Для выяснения величины подъёма давления Р применим теорему о сохранении ко

Разновидности гидроудара
Если трубопровод перекрыть не полностью, то скорость жидкости изменится не до нуля, а до значения V1 . В этом случае может возникнуть неполный гидроудар, при

Ламинарное течение в плоских зазорах
Рассмотренные выше зависимости, как уже отмечалось, действительны для труб круглого сечения, но они нуждаются в уточнении, если форма сечения потока отличается от окружности. Такие потоки имеют мес

Ламинарное течение в плоских зазорах с подвижной стенкой
В процессе работы гидроаппаратов и гидромашин может встречаться ситуация, когда о

Ламинарное течение в кольцевых зазорах
Зазоры в виде цилиндрического кольца встречаются практически в каждом конструктивном элементе гидросистем: в любых гидравлических аппаратах, гидромашинах, гидравлической арматуре. Эти зазоры могут

Ламинарное течение в трубах прямоугольного сечения
Для определения потерь энергии в таких трубах используют формулу Дарси (напомним

Смазочный слой в подшипнике
Особым случаем ламинарного движения жидкости в кольцевом зазоре является относительное вращение двух цилиндрических поверхностей, образующих кольцевую щель между вращающейся цапфой и неподвижным вк

Кавитационные течения
В некоторых случаях при движении жидкости возникают явления, связанные с изменением её агрегатного состояния, а именно, с превращением некоторых её частиц в газообразное состояние. Наприм

Течение с облитерацией
При течении жидкости через капилляры, а также малые зазоры наблюдается явление, которое нельзя объяснить законами гидравлики. Это явление заключается в том, что расход жидкости через капилляр или з

Течение с теплообменом
В рассмотренных выше случаях ламинарного течения не учитывалось изменение температуры и, следовательно, изменение вязкости жидкости как в пределах поперечного сечения, так и вдоль потока, т.е. пред

Течение при больших перепадах давления
В высоконапорных гидромашинах, например гидравлических прессах, может происходить ламинарное течение жидкости через малые зазоры при больших перепадах давлений порядка нескольких десятков и даже со



Статьи по теме